Câu hỏi:

12/07/2024 140

Khảo sát sự biến thiên và vẽ đồ thị của mỗi hàm số sau:

y = ;

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

y =

1) Tập xác định: D = ℝ\{1}.

2) Sự biến thiên.

Giới hạn tại vô cực, giới hạn vô cực và các đường tiệm cận.

Ta có: y = −∞, y = +∞.

           y = +∞, y = −∞.

Do đó, đường thẳng x = 1 là tiệm cận đứng của đồ thị hàm số.

= = = −1.

[y – (−x)] = = = 1.

Do đó, đường thẳng y = −x + 1 là tiệm cận xiên của đồ thị hàm số.

Ta có: y' =

           y' = 0   = 0 x = 0 hoặc x = 2.

Ta có bảng biến thiên như sau:

Hàm số nghịch biến trên các khoảng (−∞; 0) và (2; +∞).

Hàm số đồng biến trên các khoảng (0; 1) và (1; 2).

Hàm số đạt cực tiểu tại x = 0, yCT = 2; hàm số đạt cực đại tại x = 2, y = −2.

3) Đồ thị

Đồ thị hàm số nhận đường thẳng x = 1 làm tiệm cận đứng và y = −x + 1 làm tiệm cận xiên.

Giao của đồ thị hàm số với trục tung là (0; 2).

Hàm số đi qua các điểm: ; ; (0; 2); (2; −2); .

Ta có đồ thị hàm số:

Đồ thị hàm số nhận giao điểm của hai đường tiệm cận có tọa độ (1; 0) làm tâm đối xứng và nhận phân giác của các góc tạo bởi hai đường tiệm cận đó làm trục đối xứng.

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

a) S

b) Đ

c) Đ

d) S

 

Tiệm cận đứng của đồ thị hàm số là đường thẳng x = −n nằm bên trái trục tung nên

−n < 0 hay n > 0.

Tiệm cận xiên có hệ số góc là a có hướng đi lên từ trái sang phải nên a > 0.

Đồ thị cắt trục tung tại điểm (0; ) nằm về phía trên trục hoành nên c > 0.

Đồ thị cắt trục hoành tại hai điểm có hoành độ âm nên phương trình ax2 + bx + c = 0 có hai nghiệm âm phân biệt nên < 0 hay b > 0.

Lời giải

Đáp án đúng là: B

Ta có: y =

Tập xác định: D = ℝ\{−1}.

Đồ thị hàm số này có đường tiệm cận đứng x = −1 nên có thể là phương án B hoặc D.

Có hệ số của x2 ở tử là a = 1 và hệ số của x ở mẫu là m = 1 nên a, m cùng dấu.

Vậy phương án đúng là B.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay