Câu hỏi:

16/08/2024 3,349

Một trường tuyển được 85 học sinh vào hai lớp năng khiếu bóng rổ và bóng chuyền. Nếu chuyển 25 học sinh từ lớp bóng rổ sang lớp bóng chuyền thì số học sinh của lớp bóng chuyền bằng 125 số học sinh của lớp bóng rổ. Hãy tính xem mỗi lớp có bao nhiêu học sinh.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Gọi x, y lần lượt là số học sinh của lớp bóng rổ và lớp bóng chuyền (x ℕ*, y ℕ*, x < 85, y < 85).

Do trường có 85 học sinh nên ta có: x + y = 85. (1)

Số học sinh lớp bóng chuyền sau khi chuyển 25 học sinh từ lớp bóng rổ sang là: y + 25 (học sinh).

Lúc này, số học sinh lớp bóng rổ còn lại là: x ‒ 25 (học sinh).

Theo bài, sau khi chuyển 25 học sinh từ lớp bóng rổ sang lớp bóng chuyền thì số học sinh của lớp bóng chuyền bằng 125 số học sinh của lớp bóng rổ nên ta có phương trình:

y+25=125x25

5(y + 25) = 12(x – 25)

5y + 125 = 12x – 300

12x – 5y = 425. (2)

Từ (1) và (2) ta có hệ phương trình: x+y=8512x5y=425

Nhân hai vế phương trình (1) với 5, ta được: 5x+5y=42512x5y=425

Cộng từng vế hai phương trình của hệ, ta được:

17x = 850, suy ra x = 50.

Thay x = 50 vào phương trình (1), ta được:

50 + y = 85, do đó y = 35.

Ta thấy x = 50, y = 35 thoả mãn điều kiện.

Vậy lớp bóng rổ có 50 học sinh và lớp bóng chuyền có 35 học sinh.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Gọi x (bông) và y (bông) lần lượt là số bông hoa hồng và số bông hoa cẩm chướng người đó mua (x ℕ*, y ℕ*).

Do người đó mua 36 bông hoa hồng và hoa cẩm chướng nên ta có phương trình:

x + y = 36. (1)

Số tiền mua hoa hồng là: 5 500x (đồng).

Số tiền mua hoa cẩm chướng là: 4 000y (đồng).

Do mua hết tất cả 174 000 đồng nên ta có phương trình:

5 500x + 4 000y = 174 000 hay 11x + 8y = 348. (2)

Từ (1) và (2) ta có hệ phương trình x+y=36                  111x+8y=348      2 

Nhân hai vế của phương trình (1) với 8, ta được 8x+8y=28811x+8y=348 

Trừ từng vế của phương trình thứ hai và phương trình thứ nhất, ta được:

3x = 60, suy ra x = 20.

Thay x = 20 vào phương trình (1), ta được:

20 + y = 36, do đó y = 16.

Ta thấy x = 20, y = 16 thoả mãn điều kiện.

Vậy người đó đã mua 20 bông hoa hồng và 16 bông hoa cẩm chướng.

Lời giải

 3x+2y=4     12xy=5        2

Nhân hai vế của phương trình (2) với 2, ta được: 3x+2y=44x2y=10

Cộng từng vế hai phương trình của hệ, ta được:

7x = 14, suy ra x = 2.

Thay x = 2 vào phương trình (2), ta được:

2.2 – y = 5, hay 4 – y = 5, do đó y = –1.

Vậy hệ phương trình đã cho có nghiệm duy nhất là (2; ‒1).

 

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay