Câu hỏi:
22/08/2024 2,293Tính diện tích hình phẳng giới hạn bởi các đường sau:
a) y = (x – 1)3, y = x – 1,x = 0, x = 1.
b) y = x3 + 2x2 – 3x, y = x2 + 3x, x = −3, x = 0.
Quảng cáo
Trả lời:
a) Ta có: (x – 1)3 ≥ x – 1, với mọi x ∈ [0; 1].
Do đó, diện tích cần tính là:
S = \(\int\limits_0^1 {\left| {{{\left( {x - 1} \right)}^3} - \left( {x - 1} \right)} \right|dx} \) = \(\int\limits_0^1 {\left[ {{{\left( {x - 1} \right)}^3} - \left( {x - 1} \right)} \right]dx} \)
= \(\int\limits_0^1 {\left( {{x^3} - 3{x^2} + 2x} \right)} dx\)
= \(\left. {\left( {\frac{{{x^4}}}{4} - {x^3} + {x^2}} \right)} \right|_0^1\) = \(\frac{1}{4}\).
b) Ta có: x3 + 2x2 – 3x – x2 – 3x = x3 + x2 – 6x = x(x – 2)(x + 3) ≥ 0, với mọi x ∈ [−3; 0].
Do đó, diện tích cần tính là:
S = \(\int\limits_{ - 3}^0 {\left| {{x^3} + 2{x^2}--3x--{x^2}--3x} \right|} dx\)
= \(\int\limits_{ - 3}^0 {\left| {{x^3} + {x^2} - 6x} \right|dx} \)
= \(\int\limits_{ - 3}^0 {\left( {{x^3} + {x^2} - 6x} \right)dx} \)
= \(\left. {\left( {\frac{{{x^4}}}{4} + \frac{{{x^3}}}{3} - 3{x^2}} \right)} \right|_{ - 3}^0\)
= \(\frac{{63}}{4}\).
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Tính thể tích của vật thể ℬ, biết đáy của ℬ là hình tròn bán kính 2 và mặt cắt vuông góc với mặt đáy là những hình vuông (H.4.6).
Câu 3:
Tính diện tích hình phẳng giới hạn bởi các đường sau:
a) y = ex, y = \(\sqrt x \), x = 0, x = 1;
b) y = cosx, y = \(\frac{1}{2}\), x = 0, x = \(\frac{\pi }{3}\).
Câu 4:
Xét hình phẳng giới hạn bởi các đường y = \(\sqrt x \), y = \(\frac{{{x^2}}}{8}\), x = 0, x = 4.
a) Tính diện tích hình phẳng.
b) Tính thể tích khối tròn xoay sinh ra khi quay hình phẳng xung quanh trục Ox.
Câu 5:
Tính thể tích khối tròn xoay sinh ra khi quay hình phẳng giới hạn bởi các đường sau xung quanh trục Ox:
a) y = \(2\sqrt x \), y = 0, x = 1, x = 4.
b) y = 4x, y = x3, x = 0, x = 2.
Câu 6:
Một trận dịch lây lan đến mức sau khi bùng phát t tuần số người nhiễm bệnh là:
N1(t) = 0,1t2 + 0,5t + 150, 0 ≤ t ≤ 50.
Hai mươi lăm tuần sau dịch sẽ bùng phát, một loại vắc xin đã được phát triển và tiêm cho công chúng. Khi đó, số người nhiễm bệnh được điều chỉnh theo mô hình
N2(t) = −0,2t2 + 6t + 200, 25 ≤ t ≤ 50.
a) Thời điểm t để sau khi tiêm vắc xin thì dịch bệnh kết thúc, tức là số người nhiễm bệnh N2(t) = 0.
b) Ước tính gần đúng số người mà vắc xin đã ngăn ngừa khỏi dịch bệnh trong thời gian xảy ra dịch bệnh.
5920 câu Trắc nghiệm tổng hợp môn Toán 2023 có đáp án (Phần 1)
135 câu Bài tập Hình học mặt nón, mặt trụ, mặt cầu cực hay có lời giải (P1)
80 câu Trắc nghiệm Tích phân có đáp án (Phần 1)
15 câu Trắc nghiệm Số phức có đáp án (Vận dụng)
7 câu Trắc nghiệm Khối đa diện lồi và khối đa diện đều có đáp án (Vận dụng)
62 câu Trắc nghiệm Khái niệm về khối đa diện (nhận biết)
79 câu Chuyên đề Toán 12 Bài 2 Dạng 1: Xác định vectơ pháp tuyến và viết phương trình mặt phẳng có đáp án
80 câu Bài tập Hình học Khối đa diện có lời giải chi tiết (P1)
Hãy Đăng nhập hoặc Tạo tài khoản để gửi bình luận