Câu hỏi:
22/08/2024 2,641Xét hình phẳng giới hạn bởi các đường y = \(\sqrt x \), y = \(\frac{{{x^2}}}{8}\), x = 0, x = 4.
a) Tính diện tích hình phẳng.
b) Tính thể tích khối tròn xoay sinh ra khi quay hình phẳng xung quanh trục Ox.
Quảng cáo
Trả lời:
a) Ta có đồ thị hàm số như sau:
Quan sát đồ thị, ta thấy đồ thị hàm số y = \(\sqrt x \) nằm phía trên đồ thị hàm số y = \(\frac{{{x^2}}}{8}\) so với trục hoành, với x ∈ [0; 4].
Diện tích cần tính là:
S = \(\int\limits_0^4 {\left| {\sqrt x - \frac{{{x^2}}}{8}} \right|} dx = \int\limits_0^4 {\left( {\sqrt x - \frac{{{x^2}}}{8}} \right)} dx = \left. {\left( {\frac{2}{3}x\sqrt x - \frac{{{x^3}}}{{24}}} \right)} \right|_0^4 = \frac{8}{3}\).
b) Thể tích khối tròn xoay sinh ra khi quay hình phẳng giới hạn bởi các đường y = \(\sqrt x \),
y = 0, x = 0, x = 4 quanh trục Ox là:
V1 = \(\pi \int\limits_0^4 {{{\left( {\sqrt x } \right)}^2}} dx = \pi \int\limits_0^4 {xdx = \left. {\frac{{\pi {x^2}}}{2}} \right|_0^4 = 8\pi .} \)
Thể tích khối tròn xoay sinh ra khi quay hình phẳng giới hạn bởi các đường y = \(\frac{{{x^2}}}{8}\),
y = 0, x = 0, x = 2 quanh trục Ox là:
V2 = \(\pi \int\limits_0^4 {{{\left( {\frac{{{x^2}}}{8}} \right)}^2}} dx = \pi \int\limits_0^4 {\frac{{{x^4}}}{{64}}dx = \left. {\frac{{\pi {x^5}}}{{320}}} \right|_0^4 = \frac{{16\pi }}{5}.} \)
Thể tích cần tính là:
V = V1 – V2 = \(8\pi - \frac{{16\pi }}{5} = \frac{{24\pi }}{5}\).
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Ta có hình sau:
Mỗi mặt phẳng vuông góc với trục hoành tại điểm có hoành độ bằng x (−2 ≤ x ≤ 2) cắt vật thể theo mặt cắt là hình vuông có độ dài cạnh là AB = 2BH = \(2\sqrt {4 - {x^2}} \).
Khi đó diện tích mặt cắt là 4(4 – x2).
Vậy thể tích của vật thể là: V = \(\int\limits_{ - 2}^2 {4\left( {4 - {x^2}} \right)} dx = \frac{{128}}{3}\).
Lời giải
a) Diện tích cần tính là:
S = \(\int\limits_0^5 {\left| {{x^2} - 4} \right|dx} = \int\limits_0^2 {\left| {{x^2} - 4} \right|dx} + \int\limits_2^5 {\left| {{x^2} - 4} \right|dx} \)
= \(\int\limits_0^2 {\left( {4 - {x^2}} \right)dx} + \int\limits_2^5 {\left( {{x^2} - 4} \right)dx} \)
= \(\left. {\left( {4x - \frac{{{x^3}}}{3}} \right)} \right|_0^2 + \left. {\left( {\frac{{{x^3}}}{3} - 4x} \right)} \right|_2^5\)
= 4.2 – \(\frac{8}{3}\) − 4.0 + \(\frac{0}{3}\) + \(\frac{{{5^3}}}{3}\) − 4.5 – \(\frac{8}{3}\) + 4.2 = \(\frac{{97}}{3}\).
b) Diện tích cần tính là:
S = \(\int\limits_0^2 {\left| { - {x^2} + 9 - \left( {2x + 1} \right)} \right|dx} \) = \(\int\limits_0^2 {\left| { - {x^2} - 2x + 8} \right|} dx\)
= \(\int\limits_0^2 {\left( { - {x^2} - 2x + 8} \right)dx} \)
= \(\left. {\left( {\frac{{ - {x^3}}}{3} - {x^2} + 8x} \right)} \right|_0^2\) = \(\frac{{28}}{3}\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
5920 câu Trắc nghiệm tổng hợp môn Toán 2023 có đáp án (Phần 1)
135 câu Bài tập Hình học mặt nón, mặt trụ, mặt cầu cực hay có lời giải (P1)
79 câu Chuyên đề Toán 12 Bài 2 Dạng 1: Xác định vectơ pháp tuyến và viết phương trình mặt phẳng có đáp án
87 câu Chuyên đề Toán 12 Bài 3 Dạng 1: Xác định vectơ pháp tuyến và viết phương trình mặt phẳng có đáp án
80 câu Trắc nghiệm Tích phân có đáp án (Phần 1)
56 câu Chuyên đề Toán 12 Bài 2: Lôgarit có đáp án
15 câu Trắc nghiệm Số phức có đáp án (Vận dụng)
7 câu Trắc nghiệm Khối đa diện lồi và khối đa diện đều có đáp án (Vận dụng)
Hãy Đăng nhập hoặc Tạo tài khoản để gửi bình luận