Câu hỏi:
22/08/2024 7,072
Tính thể tích của vật thể ℬ, biết đáy của ℬ là hình tròn bán kính 2 và mặt cắt vuông góc với mặt đáy là những hình vuông (H.4.6).
Tính thể tích của vật thể ℬ, biết đáy của ℬ là hình tròn bán kính 2 và mặt cắt vuông góc với mặt đáy là những hình vuông (H.4.6).

Quảng cáo
Trả lời:
Ta có hình sau:

Mỗi mặt phẳng vuông góc với trục hoành tại điểm có hoành độ bằng x (−2 ≤ x ≤ 2) cắt vật thể theo mặt cắt là hình vuông có độ dài cạnh là AB = 2BH = \(2\sqrt {4 - {x^2}} \).
Khi đó diện tích mặt cắt là 4(4 – x2).
Vậy thể tích của vật thể là: V = \(\int\limits_{ - 2}^2 {4\left( {4 - {x^2}} \right)} dx = \frac{{128}}{3}\).
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
- 20 Bộ đề, Tổng ôn, sổ tay môn Toán (có đáp án chi tiết) ( 55.000₫ )
- 20 đề thi tốt nghiệp môn Toán (có đáp án chi tiết) ( 38.500₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Bộ đề thi tốt nghiệp 2025 các môn Toán, Lí, Hóa, Văn, Anh, Sinh, Sử, Địa, KTPL (có đáp án chi tiết) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
a) Diện tích cần tính là:
S = \(\int\limits_0^5 {\left| {{x^2} - 4} \right|dx} = \int\limits_0^2 {\left| {{x^2} - 4} \right|dx} + \int\limits_2^5 {\left| {{x^2} - 4} \right|dx} \)
= \(\int\limits_0^2 {\left( {4 - {x^2}} \right)dx} + \int\limits_2^5 {\left( {{x^2} - 4} \right)dx} \)
= \(\left. {\left( {4x - \frac{{{x^3}}}{3}} \right)} \right|_0^2 + \left. {\left( {\frac{{{x^3}}}{3} - 4x} \right)} \right|_2^5\)
= 4.2 – \(\frac{8}{3}\) − 4.0 + \(\frac{0}{3}\) + \(\frac{{{5^3}}}{3}\) − 4.5 – \(\frac{8}{3}\) + 4.2 = \(\frac{{97}}{3}\).
b) Diện tích cần tính là:
S = \(\int\limits_0^2 {\left| { - {x^2} + 9 - \left( {2x + 1} \right)} \right|dx} \) = \(\int\limits_0^2 {\left| { - {x^2} - 2x + 8} \right|} dx\)
= \(\int\limits_0^2 {\left( { - {x^2} - 2x + 8} \right)dx} \)
= \(\left. {\left( {\frac{{ - {x^3}}}{3} - {x^2} + 8x} \right)} \right|_0^2\) = \(\frac{{28}}{3}\).
Lời giải
a) Thời gian t mà dịch bệnh kết thúc thỏa mãn phương trình:
−0,2t2 + 6t + 200 = 0 ⇔ t = 50 (vì t ≥ 0).
b) Như vậy khi có vắc xin tiêm cho công chúng từ tuần thứ hai mươi lăm tới tuần thứ năm mươi khi kết thúc dịch (theo mô hình chỉ ra).
Số người mà vắc xin đã ngăn ngừa khỏi bệnh trong thời gian xảy ra dịch bệnh là:
\(\int\limits_{25}^{50} {\left[ {{N_1}\left( t \right) - {N_2}\left( t \right)} \right]dt} = \int\limits_{25}^{50} {\left( {0,3{t^2} - 5,5t - 50} \right)dt} \)= \(\left. {\left( {0,1{t^3} - 5,5.\frac{{{t^2}}}{2} - 50t} \right)} \right|_{25}^{50}\) ≈ 4 531.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.