Câu hỏi:
22/08/2024 16,220
Một công ty ước tính rằng chi phí C (USD) để sản xuất x đơn vị sản phẩm có thể được mô hình hóa bằng công thức
C = 800 + 0,04x + 0,0002x2.
Tìm mức sản xuất sao cho chi phí trung bình \(\overline C (x) = \frac{{C(x)}}{x}\) cho mỗi đơn vị hàng hóa là nhỏ nhất.
Một công ty ước tính rằng chi phí C (USD) để sản xuất x đơn vị sản phẩm có thể được mô hình hóa bằng công thức
C = 800 + 0,04x + 0,0002x2.
Tìm mức sản xuất sao cho chi phí trung bình \(\overline C (x) = \frac{{C(x)}}{x}\) cho mỗi đơn vị hàng hóa là nhỏ nhất.
Quảng cáo
Trả lời:
Ta có: \(\overline C (x) = \frac{{C(x)}}{x} = \frac{{800}}{x} + 0,04 + 0,0002x\)
Suy ra, \(\overline {C'} (x) = - \frac{{800}}{{{x^2}}} + 0,0002 = \frac{{0,0002{x^2} - 800}}{{{x^2}}}\)
\(\overline {C'} (x)\) = 0 ⇔ x = 2 000 (do x > 0).
Bảng biến thiên của hàm số:

Từ bảng biến thiên suy ta với mức sản xuất là 2 000 thì chi phí trung bình cho mỗi đơn vị hàng hóa là nhỏ nhất.
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
- 20 Bộ đề, Tổng ôn, sổ tay môn Toán (có đáp án chi tiết) ( 55.000₫ )
- 20 đề thi tốt nghiệp môn Toán (có đáp án chi tiết) ( 38.500₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Bộ đề thi tốt nghiệp 2025 các môn Toán, Lí, Hóa, Văn, Anh, Sinh, Sử, Địa, KTPL (có đáp án chi tiết) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Ta có: R'(x) = \(\frac{{5000}}{{1 + 5{e^{ - x}}}}\), x ≥ 0.
R''(x) = \(\frac{{ - 25000{e^{ - x}}{{\left( {1 + 5{e^{ - x}}} \right)}^2} + 25000{e^{ - x}}.2\left( {1 + 5{e^{ - x}}} \right).5{e^{ - x}}}}{{{{\left( {1 + 5{e^{ - x}}} \right)}^4}}}\)
R''(x) = 0 ⇔ x = ln5 ≈ 1,61.
Ta có bảng biến thiên như sau:

Từ bảng biến thiên, ta thấy tốc độ bán hàng đạt tối đa vào thời điểm năm thứ hai.
Lời giải
Gọi x (m) là cạnh đáy của chiếc hộp.
Khi đó, ta có chiều cao của chiếc hộp là \(\frac{{2000}}{{{x^2}}}\) (cm).
Suy ra, tổng diện tích bề mặt của chiếc hộp là:
S = 2x2 + 4x.\(\frac{{2000}}{{{x^2}}}\) = 2x2 + \(\frac{{8000}}{x}\), x > 0.
Ta có: S' = 4x – \(\frac{{8000}}{{{x^2}}}\) = \(\frac{{4{x^3} - 8000}}{{{x^2}}}\)
S' = 0 ⇔ x = 10\(\sqrt[3]{2}\).
Ta có bảng biến thiên:

Dễ thấy lượng vật liệu dùng để sản xuất là nhỏ nhất khi cạnh đáy của hộp là 10\(\sqrt[3]{2}\) (cm) và chiều cao của hộp là \(\frac{{20}}{{\sqrt[3]{4}}}\) cm.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.