Cho góc vuông xOy có hai cạnh tiếp xúc với đường tròn (I; R) tại A, B. Cho biết chu vi của tứ giác OAIB bằng 20 cm. Tính R và độ dài AB.
Cho góc vuông xOy có hai cạnh tiếp xúc với đường tròn (I; R) tại A, B. Cho biết chu vi của tứ giác OAIB bằng 20 cm. Tính R và độ dài AB.
Quảng cáo
Trả lời:

Ta có Ox và Oy tiếp xúc với (I; R) lần lượt tại A và B
Suy ra IA ⊥ Ox tại A, IB ⊥ Oy tại B và IA = IB = R.
Tứ giác OAIB có ba góc vuông \(\left( {\widehat {AOB} = \widehat {OAI} = \widehat {OBI} = 90^\circ } \right)\) và có hai cạnh kề bằng nhau (IA = IB) nên OAIB là hình vuông. Do đó IA = IB = OA = OB = R.
Khi đó, chu vi của hình vuông OAIB là 4R.
Theo bài, chu vi của tứ giác OAIB bằng 20 cm nên 4R = 20, suy ra R = 5 cm.
Xét ∆IAB vuông tại I, theo định lí Pythagore, ta có:
AB2 = IA2 + IB2 = 2R2 = 2.52 = 50.
Suy ra \(AB = \sqrt {50} = 5\sqrt 2 \;({\rm{cm}}).\)
Hot: 500+ Đề thi vào 10 file word các Sở Hà Nội, TP Hồ Chí Minh có đáp án 2025 (chỉ từ 100k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải

a) Ta có hai tiếp tuyến tại B và C của đường tròn (O) cắt nhau tại A nên AO là tia phân giác của \(\widehat {BAC},\) suy ra \(\widehat {OAC} = \frac{{\widehat {BAC}}}{2} = 20^\circ .\)
Xét ∆OAC vuông tại C có \(\widehat {AOC} + \widehat {OAC} = 90^\circ \)
Suy ra \(\widehat {AOC} = 90^\circ - \widehat {OAC} = 90^\circ - 20^\circ = 70^\circ \) hay \[\widehat {DOC} = 70^\circ .\]
Xét ∆ODC cân tại O (do OC = OD), có \(\widehat {ODC} = \frac{{180^\circ - \widehat {COD}}}{2} = \frac{{180^\circ - 70^\circ }}{2} = 55^\circ .\)
b) Ta có hai tiếp tuyến tại B và C của đường tròn (O) cắt nhau tại A nên AC = AB.
Xét ∆OAC vuông tại C ta có:
⦁ \(AC = OC \cdot \tan \widehat {AOC} = 12 \cdot \tan 70^\circ \approx 33\;(\;{\rm{cm}}).\)
Do đó AC = AB ≈ 33 cm.
⦁ \(OC = OA \cdot \sin \widehat {OAC}\)
Suy ra \(OA = \frac{{OC}}{{\sin \widehat {OAC}}} = \frac{{12}}{{\sin 20^\circ }} \approx 35\;(\;{\rm{cm}}).\)
Lời giải
Do PB và PA là hai tiếp tuyến của đường tròn (O) lần lượt tại B và A
Suy ra OB ⊥ BP; OA ⊥ AP
Nên ∆OBP vuông tại B; ∆OAP vuông tại A.
Xét ∆OPB vuông tại B, ta có OP2 = OB2 + PB2 (định lí Pythagore)
Hay (OQ + QP)2 = OB2 + PB2
Suy ra (R + 4)2 = R2 + 82
R2 + 8R + 16 = R2 + 64
8R = 48
R = 6.
Do đó OP = OQ + QP = 6 + 4 = 10.
Như vậy, \(\sin \widehat {BOP} = \frac{{PB}}{{OP}} = \frac{8}{{10}} = \frac{4}{5},\) suy ra \(\widehat {BOP} \approx 53^\circ .\)
Theo bài, hai tiếp tuyến AP và BP của đường tròn (O; R) cắt nhau tại P nên OP là tia phân giác của góc AOB.
Khi đó, \(\widehat {AOB} = 2\widehat {BOP} \approx 2 \cdot 53^\circ = 106^\circ .\)
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.