Câu hỏi:

28/08/2024 708

Một người ngồi trên trạm quan sát cao 15 m so với mực nước biển. Vào ngày trời trong xanh thì tầm nhìn xa tối đa của người đó là bao nhiêu kilômét? Biết rằng bán kính Trái Đất là khoảng 6 400 km. Làm tròn kết quả đến hàng phần trăm.

Một người ngồi trên trạm quan sát cao 15 m so với mực nước biển. Vào ngày trời trong xanh thì tầm nhìn xa tối đa của người đó là bao nhiêu kilômét? Biết rằng bán kính Trái Đất là khoảng 6 400 km. Làm tròn kết quả đến hàng phần trăm. (ảnh 1)

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack
Một người ngồi trên trạm quan sát cao 15 m so với mực nước biển. Vào ngày trời trong xanh thì tầm nhìn xa tối đa của người đó là bao nhiêu kilômét? Biết rằng bán kính Trái Đất là khoảng 6 400 km. Làm tròn kết quả đến hàng phần trăm. (ảnh 2)

Theo đề bài ta có hình vẽ trên. Trong đó điểm M biểu diễn vị trí của người ngồi trên trạm quan sát, điểm A biểu diễn vị trí của trạm quan sát, điểm T biểu diễn điểm xa nhất mà người đó nhìn thấy. Khi đó đoạn thẳng MT là tầm nhìn xa tối đa từ M.

Vì T là điểm nhìn xa tối đa nên MT là tiếp tuyến của đường tròn (đường tròn coi như là bề mặt Trái Đất). Đặt h = MA = 15 m = 0,015 km, R = OA = OT = 6 400 km.

Áp dụng định lí Pythagore cho tam giác OTM vuông tại T, ta có:

MT2 = OM2 – OT2 = (h + R)2 – R2 = h2 + 2Rh

Suy ra \(MT = \sqrt {{h^2} + 2Rh} = \sqrt {0,{{015}^2} + 2 \cdot 6\,\,400 \cdot 0,015} \approx 13,86\;(\;{\rm{km}}).\)

Vậy tầm nhìn xa tối đa của người đó là khoảng 13,86 km.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Từ điểm A nằm ngoài đường tròn (O; 12 cm) vẽ hai tiếp tuyến của (O) tại B, C. Đoạn thẳng OA cắt (O) tại D. Cho biết BAC = 40o Tính: a) Số đo ODC (ảnh 1)

a) Ta có hai tiếp tuyến tại B và C của đường tròn (O) cắt nhau tại A nên AO là tia phân giác của \(\widehat {BAC},\) suy ra \(\widehat {OAC} = \frac{{\widehat {BAC}}}{2} = 20^\circ .\)

Xét ∆OAC vuông tại C có \(\widehat {AOC} + \widehat {OAC} = 90^\circ \)

Suy ra \(\widehat {AOC} = 90^\circ - \widehat {OAC} = 90^\circ - 20^\circ = 70^\circ \) hay \[\widehat {DOC} = 70^\circ .\]

Xét ∆ODC cân tại O (do OC = OD), có \(\widehat {ODC} = \frac{{180^\circ - \widehat {COD}}}{2} = \frac{{180^\circ - 70^\circ }}{2} = 55^\circ .\)

b) Ta có hai tiếp tuyến tại B và C của đường tròn (O) cắt nhau tại A nên AC = AB.

Xét ∆OAC vuông tại C ta có:

\(AC = OC \cdot \tan \widehat {AOC} = 12 \cdot \tan 70^\circ \approx 33\;(\;{\rm{cm}}).\)

Do đó AC = AB ≈ 33 cm.

\(OC = OA \cdot \sin \widehat {OAC}\)

Suy ra \(OA = \frac{{OC}}{{\sin \widehat {OAC}}} = \frac{{12}}{{\sin 20^\circ }} \approx 35\;(\;{\rm{cm}}).\)

Lời giải

Do PB và PA là hai tiếp tuyến của đường tròn (O) lần lượt tại B và A

Suy ra OB BP; OA AP

Nên ∆OBP vuông tại B; ∆OAP vuông tại A.

Xét ∆OPB vuông tại B, ta có OP2 = OB2 + PB2 (định lí Pythagore)

Hay (OQ + QP)2 = OB2 + PB2

Suy ra (R + 4)2 = R2 + 82

   R2 + 8R + 16 = R2 + 64

8R = 48

R = 6.

Do đó OP = OQ + QP = 6 + 4 = 10.

Như vậy, \(\sin \widehat {BOP} = \frac{{PB}}{{OP}} = \frac{8}{{10}} = \frac{4}{5},\) suy ra \(\widehat {BOP} \approx 53^\circ .\)

Theo bài, hai tiếp tuyến AP và BP của đường tròn (O; R) cắt nhau tại P nên OP là tia phân giác của góc AOB.

Khi đó, \(\widehat {AOB} = 2\widehat {BOP} \approx 2 \cdot 53^\circ = 106^\circ .\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay