Câu hỏi:

28/08/2024 9,241

Cho đường tròn (O; R) và một điểm M bên trong đường tròn đó. Qua M kẻ hai dây cung AB và CD vuông góc với nhau (D thuộc cung nhỏ AB). Vẽ đường kính DE. Chứng minh rằng:

a) MA.MB = MC.MD.

b) Tứ giác ABEC là hình thang cân.

c) Tổng MA2 + MB2 + MC2 + MD2 có giá trị không đổi khi M thay đổi vị trí trong đường tròn (O).

Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa... kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 70k).

Tổng ôn Toán-lý hóa Văn-sử-đia Tiếng anh & các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack
Cho đường tròn (O; R) và một điểm M bên trong đường tròn đó. Qua M kẻ hai dây cung AB và CD vuông góc với nhau (D thuộc cung nhỏ AB). Vẽ đường kính DE. Chứng minh rằng: (ảnh 1)

Do AB CD nên \(\widehat {AMC} = \widehat {DMB} = 90^\circ .\)

a) Xét đường tròn (O) có \(\widehat {ACD} = \widehat {ABD}\) (hai góc nội tiếp cùng chắn cung AD).

Xét ∆MAC và ∆MDB, có:

\(\widehat {AMC} = \widehat {DMB} = 90^\circ ,\,\,\widehat {ACM} = \widehat {DBM}\)

Do đó ∆MAC ∆MDB (g.g).

Suy ra \(\frac{{MA}}{{MD}} = \frac{{MC}}{{MB}}\) hay MA.MB = MC.MD.

b) Vì DE là đường kính của đường tròn (O) nên \(\widehat {ECD} = \widehat {EBD} = 90^\circ .\)

Suy ra CE CD.

Mà AB CD nên AB // CE, do đó tứ giác ABEC là hình thang.

Mặt khác, \(\widehat {CAB} + \widehat {ACM} = 90^\circ \) (tổng hai góc nhọn trong ∆ACM vuông tại M);

                 \(\widehat {EBA} + \widehat {MBD} = \widehat {EBD} = 90^\circ ;\)

                 \(\widehat {ACM} = \widehat {DBM}\)

Suy ra \(\widehat {EBA} = \widehat {CAB}.\)

Hình thang ABEC có \(\widehat {EBA} = \widehat {CAB}\) nên ABEC là hình thang cân.

c) Xét ∆ACM vuông tại M, theo định lí Pythagore, ta có:

AC2 = MA2 + MC2.

Xét ∆BDM vuông tại M, theo định lí Pythagore, ta có:

BD2 = MB2 + MD2.

Do đó MA2 + MB2 + MC2 + MD2 = AC2 + BD2.

Lại có AC = BE (vì ABEC là hình thang cân) nên:

MA2 + MB2 + MC2 + MD2 = AC2 + BD2 = BE2 + BD2.

Xét ∆BDE vuông tại B, theo định lí Pythagore, ta có:

DE2 = BD2 + BE2.

Do đó MA2 + MB2 + MC2 + MD2 = BE2 + BD2 = DE2 = (2R)2 = 4R2, đây là giá trị không đổi do R không đổi.ở

Vậy tổng MA2 + MB2 + MC2 + MD2 có giá trị không đổi.

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho tam giác ABC cân tại A, \(\widehat A < 90^\circ .\) Vẽ đường tròn đường kính AB cắt BC và AC lần lượt tại D và E. Chứng minh rằng:

a) ∆DBE là tam giác cân.

b) \(\widehat {CBE} = \frac{1}{2}\widehat {BAC}.\)

Xem đáp án » 28/08/2024 13,217

Câu 2:

Cho hai đường tròn (O; R) và (O’; R’) (R > R’) tiếp xúc trong tại A. Một tiếp tuyến của đường tròn (O’) tại M cắt đường tròn (O) tại hai điểm B, C. Đường thẳng BO’ cắt đường tròn (O) tại điểm thứ hai D và cắt đường thẳng AM tại E. Gọi F là giao điểm thứ hai của đường tròn ngoại tiếp tam giác ADE với AC và N là giao điểm thứ hai của AN với (O). Chứng minh rằng:

a) O’M // ON.

b) Ba điểm D, N, F thẳng hàng.

c) DF là tia phân giác của góc \(\widehat {BDC}.\)

Xem đáp án » 28/08/2024 2,309

Câu 3:

Cho tam giác ABC nhọn với các đường cao AA’, BB’, CC’. Chứng minh rằng A’A là tia phân giác của góc \(\widehat {B'A'C'}.\)

Xem đáp án » 28/08/2024 2,229

Câu 4:

Cho hai đường tròn (O; R) và (O’; R’) cắt nhau tại hai điểm A và B phân biệt. Vẽ đường thẳng vuông góc với AB tại A và cắt (O), (O’) lần lượt tại C, D. Tia CB cắt (O’) tại E, tia DB cắt (O) tại F. Chứng minh rằng:

a) CD.CA = CB.CE.

b) DC.DA = DB.DF.

c) CD2 = CB.CE + DB.DF.

Xem đáp án » 28/08/2024 2,066

Câu 5:

Chọn đúng hoặc sai cho mỗi ý a), b), c), d).

Cho AB và AC là hai tiếp tuyến tiếp xúc với đường tròn (O; R) lần lượt tại hai tiếp điểm B và C (Hình 8).

Cho AB và AC là hai tiếp tuyến tiếp xúc với đường tròn (O; R) lần lượt tại hai tiếp điểm B và C (Hình 8).  a) AB = AO. (ảnh 1)

a) AB = AO.

b) Tia AO là tia phân giác của \(\widehat {BAC}.\)

c) Tia OA là tia phân giác của \(\widehat {BOC}.\)

d) OA = OB = R.

Xem đáp án » 28/08/2024 1,549

Câu 6:

Cung 50° của một đường tròn đường kính d = 25 cm có độ dài (lấy π theo máy tính và kết quả làm tròn đến hàng phần trăm) là

A. 43,64 cm.

B. 10,91 cm.

C. 21,82 cm.

D. 87,28 cm.

Xem đáp án » 28/08/2024 714