Câu hỏi:
28/08/2024 1,486Cho đường tròn (O; R) và một điểm M bên trong đường tròn đó. Qua M kẻ hai dây cung AB và CD vuông góc với nhau (D thuộc cung nhỏ AB). Vẽ đường kính DE. Chứng minh rằng:
a) MA.MB = MC.MD.
b) Tứ giác ABEC là hình thang cân.
c) Tổng MA2 + MB2 + MC2 + MD2 có giá trị không đổi khi M thay đổi vị trí trong đường tròn (O).
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Do AB ⊥ CD nên \(\widehat {AMC} = \widehat {DMB} = 90^\circ .\)
a) Xét đường tròn (O) có \(\widehat {ACD} = \widehat {ABD}\) (hai góc nội tiếp cùng chắn cung AD).
Xét ∆MAC và ∆MDB, có:
\(\widehat {AMC} = \widehat {DMB} = 90^\circ ,\,\,\widehat {ACM} = \widehat {DBM}\)
Do đó ∆MAC ᔕ ∆MDB (g.g).
Suy ra \(\frac{{MA}}{{MD}} = \frac{{MC}}{{MB}}\) hay MA.MB = MC.MD.
b) Vì DE là đường kính của đường tròn (O) nên \(\widehat {ECD} = \widehat {EBD} = 90^\circ .\)
Suy ra CE ⊥ CD.
Mà AB ⊥ CD nên AB // CE, do đó tứ giác ABEC là hình thang.
Mặt khác, \(\widehat {CAB} + \widehat {ACM} = 90^\circ \) (tổng hai góc nhọn trong ∆ACM vuông tại M);
\(\widehat {EBA} + \widehat {MBD} = \widehat {EBD} = 90^\circ ;\)
\(\widehat {ACM} = \widehat {DBM}\)
Suy ra \(\widehat {EBA} = \widehat {CAB}.\)
Hình thang ABEC có \(\widehat {EBA} = \widehat {CAB}\) nên ABEC là hình thang cân.
c) Xét ∆ACM vuông tại M, theo định lí Pythagore, ta có:
AC2 = MA2 + MC2.
Xét ∆BDM vuông tại M, theo định lí Pythagore, ta có:
BD2 = MB2 + MD2.
Do đó MA2 + MB2 + MC2 + MD2 = AC2 + BD2.
Lại có AC = BE (vì ABEC là hình thang cân) nên:
MA2 + MB2 + MC2 + MD2 = AC2 + BD2 = BE2 + BD2.
Xét ∆BDE vuông tại B, theo định lí Pythagore, ta có:
DE2 = BD2 + BE2.
Do đó MA2 + MB2 + MC2 + MD2 = BE2 + BD2 = DE2 = (2R)2 = 4R2, đây là giá trị không đổi do R không đổi.ở
Vậy tổng MA2 + MB2 + MC2 + MD2 có giá trị không đổi.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho tam giác ABC cân tại A, \(\widehat A < 90^\circ .\) Vẽ đường tròn đường kính AB cắt BC và AC lần lượt tại D và E. Chứng minh rằng:
a) ∆DBE là tam giác cân.
b) \(\widehat {CBE} = \frac{1}{2}\widehat {BAC}.\)
Câu 2:
Cho hai đường tròn (O; R) và (O’; R’) cắt nhau tại hai điểm A và B phân biệt. Vẽ đường thẳng vuông góc với AB tại A và cắt (O), (O’) lần lượt tại C, D. Tia CB cắt (O’) tại E, tia DB cắt (O) tại F. Chứng minh rằng:
a) CD.CA = CB.CE.
b) DC.DA = DB.DF.
c) CD2 = CB.CE + DB.DF.
Câu 3:
Cho tam giác ABC nhọn với các đường cao AA’, BB’, CC’. Chứng minh rằng A’A là tia phân giác của góc \(\widehat {B'A'C'}.\)
Câu 4:
Cho hai đường tròn (O; R) và (O’; R’) (R > R’) tiếp xúc trong tại A. Một tiếp tuyến của đường tròn (O’) tại M cắt đường tròn (O) tại hai điểm B, C. Đường thẳng BO’ cắt đường tròn (O) tại điểm thứ hai D và cắt đường thẳng AM tại E. Gọi F là giao điểm thứ hai của đường tròn ngoại tiếp tam giác ADE với AC và N là giao điểm thứ hai của AN với (O). Chứng minh rằng:
a) O’M // ON.
b) Ba điểm D, N, F thẳng hàng.
c) DF là tia phân giác của góc \(\widehat {BDC}.\)
Câu 5:
Chọn đúng hoặc sai cho mỗi ý a), b), c), d).
Cho AB và AC là hai tiếp tuyến tiếp xúc với đường tròn (O; R) lần lượt tại hai tiếp điểm B và C (Hình 8).
a) AB = AO.
b) Tia AO là tia phân giác của \(\widehat {BAC}.\)
c) Tia OA là tia phân giác của \(\widehat {BOC}.\)
d) OA = OB = R.
Câu 6:
Cung 50° của một đường tròn đường kính d = 25 cm có độ dài (lấy π theo máy tính và kết quả làm tròn đến hàng phần trăm) là
A. 43,64 cm.
B. 10,91 cm.
C. 21,82 cm.
D. 87,28 cm.
về câu hỏi!