Câu hỏi:

28/08/2024 2,516

Cho hai đường tròn (O; R) và (O’; R’) (R > R’) tiếp xúc trong tại A. Một tiếp tuyến của đường tròn (O’) tại M cắt đường tròn (O) tại hai điểm B, C. Đường thẳng BO’ cắt đường tròn (O) tại điểm thứ hai D và cắt đường thẳng AM tại E. Gọi F là giao điểm thứ hai của đường tròn ngoại tiếp tam giác ADE với AC và N là giao điểm thứ hai của AN với (O). Chứng minh rằng:

a) O’M // ON.

b) Ba điểm D, N, F thẳng hàng.

c) DF là tia phân giác của góc \(\widehat {BDC}.\)

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack
Cho hai đường tròn (O; R) và (O’; R’) (R > R’) tiếp xúc trong tại A. Một tiếp tuyến của đường tròn (O’) tại M cắt đường tròn (O) tại hai điểm B, C. Đường thẳng BO’ (ảnh 1)

a) Xét ∆O’AM cân tại O’ (do O’A = O’M) nên \(\widehat {O'AM} = \widehat {O\prime MA}.\)

Xét ∆OAN cân tại O (do OA = ON) nên \(\widehat {OAN} = \widehat {ANO}.\)

Do đó \(\widehat {O\prime MA} = \widehat {ONA},\) mà hai góc này ở vị trí đồng vị, suy ra O’M // ON.

b) Do BC là tiếp tuyến của (O’) nên O’M BC.

Mà O’M // ON nên ON BC.

Xét ∆OBC cân tại O (do OB = OC) nên đường cao ON đồng thời là đường phân giác của tam giác, hay \[\widehat {BON} = \widehat {CON},\] do đó  hay N là điểm chính giữa cung BC.

Mặt khác  (hai góc nội tiếp cùng chắn cung NC của đường tròn (O)) và  (góc nội tiếp chắn cung BN của đường tròn (O))

Do đó \(\widehat {BDN} = \widehat {NAC} = \widehat {EAF}.\) (1)

Trong đường tròn ngoại tiếp tam giác ADE, ta có:

\(\widehat {EAF} = \widehat {EDF} = \widehat {BDF}\) (góc nội tiếp cùng chắn cung EF). (2)

Từ (1), (2) ta có \(\widehat {BDF} = \widehat {BDN},\) suy ra D, N, F thẳng hàng.

c) Ta có hai cung BN và NC có số đo bằng nhau, suy ra \(\widehat {BDN} = \widehat {NDC}\) (hai góc nội tiếp chắn hai cung bằng nhau) hay DF là tia phân giác của \(\widehat {BDC}.\)

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Cho tam giác ABC cân tại A, góc A < 90o Vẽ đường tròn đường kính AB cắt BC và AC lần lượt tại D và E. Chứng minh rằng: a) ∆DBE là tam giác cân.  (ảnh 1)

a) Ta có D, E cùng nằm trên đường tròn đường kính AB nên \(\widehat {ADB} = \widehat {AEB} = 90^\circ \) hay AD BC và BE AC.

Xét ∆ABC cân tại A có AD là đường cao nên đồng thời là đường trung tuyến của tam giác, do đó D là trung điểm BC, suy ra \(DB = DC = \frac{1}{2}BC.\)

Xét ∆BEC vuông tại E có ED là đường trung tuyến ứng với cạnh huyền BC nên \(ED = \frac{1}{2}BC.\)

Do đó DE = DB = DC.

Vậy ∆BDE cân tại D.

b) Xét ∆ABC cân tại A có AD là đường cao nên đồng thời là tia phân giác của \(\widehat {BAC},\) do đó \(\widehat {BAD} = \frac{1}{2}\widehat {BAC}.\)

Ta có \(\widehat {DBE} = \widehat {DEB}\) (do ∆BDE cân tại D) và \(\widehat {BAD} = \widehat {BED}\) (hai góc nội tiếp cùng chắn cung BD).

Suy ra \[\widehat {DBE} = \frac{1}{2}\widehat {BAC}\] hay \[\widehat {CBE} = \frac{1}{2}\widehat {BAC}.\]

Lời giải

Cho đường tròn (O; R) và một điểm M bên trong đường tròn đó. Qua M kẻ hai dây cung AB và CD vuông góc với nhau (D thuộc cung nhỏ AB). Vẽ đường kính DE. Chứng minh rằng: (ảnh 1)

Do AB CD nên \(\widehat {AMC} = \widehat {DMB} = 90^\circ .\)

a) Xét đường tròn (O) có \(\widehat {ACD} = \widehat {ABD}\) (hai góc nội tiếp cùng chắn cung AD).

Xét ∆MAC và ∆MDB, có:

\(\widehat {AMC} = \widehat {DMB} = 90^\circ ,\,\,\widehat {ACM} = \widehat {DBM}\)

Do đó ∆MAC ∆MDB (g.g).

Suy ra \(\frac{{MA}}{{MD}} = \frac{{MC}}{{MB}}\) hay MA.MB = MC.MD.

b) Vì DE là đường kính của đường tròn (O) nên \(\widehat {ECD} = \widehat {EBD} = 90^\circ .\)

Suy ra CE CD.

Mà AB CD nên AB // CE, do đó tứ giác ABEC là hình thang.

Mặt khác, \(\widehat {CAB} + \widehat {ACM} = 90^\circ \) (tổng hai góc nhọn trong ∆ACM vuông tại M);

                 \(\widehat {EBA} + \widehat {MBD} = \widehat {EBD} = 90^\circ ;\)

                 \(\widehat {ACM} = \widehat {DBM}\)

Suy ra \(\widehat {EBA} = \widehat {CAB}.\)

Hình thang ABEC có \(\widehat {EBA} = \widehat {CAB}\) nên ABEC là hình thang cân.

c) Xét ∆ACM vuông tại M, theo định lí Pythagore, ta có:

AC2 = MA2 + MC2.

Xét ∆BDM vuông tại M, theo định lí Pythagore, ta có:

BD2 = MB2 + MD2.

Do đó MA2 + MB2 + MC2 + MD2 = AC2 + BD2.

Lại có AC = BE (vì ABEC là hình thang cân) nên:

MA2 + MB2 + MC2 + MD2 = AC2 + BD2 = BE2 + BD2.

Xét ∆BDE vuông tại B, theo định lí Pythagore, ta có:

DE2 = BD2 + BE2.

Do đó MA2 + MB2 + MC2 + MD2 = BE2 + BD2 = DE2 = (2R)2 = 4R2, đây là giá trị không đổi do R không đổi.ở

Vậy tổng MA2 + MB2 + MC2 + MD2 có giá trị không đổi.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay