Giải các phương trình:
a) 2x2 – 5x + 2 = 0;
b) –x2 + 11x – 30 = 0;
c) 5x2 – 7x – 6 = 0;
d) \[5{x^2}--2\sqrt 5 x + 1 = 0;\]
e) \(\frac{1}{{16}}{x^2} + \frac{1}{8}x = \frac{1}{2};\)
g) \({x^2} - \left( {\sqrt 5 - \sqrt 2 } \right)x - \sqrt {10} = 0.\)
Giải các phương trình:
a) 2x2 – 5x + 2 = 0;
b) –x2 + 11x – 30 = 0;
c) 5x2 – 7x – 6 = 0;
d) \[5{x^2}--2\sqrt 5 x + 1 = 0;\]
e) \(\frac{1}{{16}}{x^2} + \frac{1}{8}x = \frac{1}{2};\)
g) \({x^2} - \left( {\sqrt 5 - \sqrt 2 } \right)x - \sqrt {10} = 0.\)
Quảng cáo
Trả lời:
a) 2x2 – 5x + 2 = 0
Ta có: a = 2, b = ‒5, c = 2, ∆ = (‒5)2 ‒ 4.2.2 = 25 ‒ 16 = 9 > 0.
Vậy phương trình đã cho có hai nghiệm phân biệt là
\[{x_1} = \frac{{ - \left( { - 5} \right) + \sqrt 9 }}{{2 \cdot 2}} = \frac{{5 + 3}}{4} = \frac{8}{4} = 2;\]
\[{x_2} = \frac{{ - \left( { - 5} \right) - \sqrt 9 }}{{2 \cdot 2}} = \frac{{5 - 3}}{4} = \frac{2}{4} = \frac{1}{2}.\]
b) – x2 + 11x – 30 = 0
Ta có: a = ‒1, b = 11, c = ‒30, ∆ = 112 ‒ 4.(‒1).(‒30) = 121 ‒ 120 = 1 > 0
Vậy phương trình đã cho có hai nghiệm phân biệt là
\[{x_1} = \frac{{ - 11 + \sqrt 1 }}{{2 \cdot \left( { - 1} \right)}} = \frac{{ - 11 + 1}}{{ - 2}} = \frac{{ - 10}}{{ - 2}} = 5;\]
\[{x_2} = \frac{{ - 11 - \sqrt 1 }}{{2 \cdot \left( { - 1} \right)}} = \frac{{ - 11 - 1}}{{ - 2}} = \frac{{ - 12}}{{ - 2}} = 6.\]
c) 5x2 – 7x – 6 = 0
Ta có: a = 5, b = ‒7, c = ‒6, ∆ = (‒7)2 ‒ 4.5.(‒6) = 49 + 120 = 169 > 0.
Vậy phương trình đã cho có hai nghiệm phân biệt là
\[{x_1} = \frac{{ - \left( { - 7} \right) + \sqrt {169} }}{{2 \cdot 5}} = \frac{{7 + 13}}{{10}} = \frac{{20}}{{10}} = 2;\]
\[{x_2} = \frac{{ - \left( { - 7} \right) - \sqrt {169} }}{{2 \cdot 5}} = \frac{{7 - 13}}{{10}} = \frac{{ - 6}}{{10}} = - \frac{3}{5}.\]
d) \[5{x^2}--2\sqrt 5 x + 1 = 0\]
Ta có: a = 5, \[b = - 2\sqrt 5 ,\] c = 1, \[\Delta = {\left( { - 2\sqrt 5 } \right)^2} - 4 \cdot 5 \cdot 1 = 20 - 20 = 0.\]
Vậy phương trình đã cho có nghiệm kép là
\({x_1} = {x_2} = \frac{{ - \left( { - 2\sqrt 5 } \right)}}{{2 \cdot 5}} = \frac{{2\sqrt 5 }}{{10}} = \frac{{\sqrt 5 }}{5}.\)
e) \(\frac{1}{{16}}{x^2} + \frac{1}{8}x = \frac{1}{2}\)
x2 + 2x ‒ 8 = 0.
Ta có a = 1, b = 2, c = ‒8, ∆ = 22 ‒ 4.1.(‒8) = 4 + 32 = 36 > 0.
Vậy phương trình đã cho có hai nghiệm phân biệt là
\[{x_1} = \frac{{ - 2 + \sqrt {36} }}{{2 \cdot 1}} = \frac{{ - 2 + 6}}{2} = \frac{4}{2} = 2;\]
\[{x_2} = \frac{{ - 2 - \sqrt {36} }}{{2 \cdot 1}} = \frac{{ - 2 - 6}}{2} = \frac{{ - 8}}{2} = - 4.\]
g) \({x^2} - \left( {\sqrt 5 - \sqrt 2 } \right)x - \sqrt {10} = 0.\)
Ta có \[a = 1,\,\,b = - \sqrt 5 + \sqrt 2 ,\,\,c = - \sqrt {10} ,\]
\[\Delta = {\left[ { - \left( {\sqrt 5 - \sqrt 2 } \right)} \right]^2} - 4 \cdot 1 \cdot \left( { - \sqrt {10} } \right)\]
\[ = 5 - 2\sqrt {10} + 2 + 4\sqrt {10} \]
\[ = 5 + 2\sqrt {10} + 2 = {\left( {\sqrt 5 + \sqrt 2 } \right)^2} > 0.\]
Nên \(\sqrt \Delta = \sqrt {{{\left( {\sqrt 5 + \sqrt 2 } \right)}^2}} = \left| {\sqrt 5 + \sqrt 2 } \right| = \sqrt 5 + \sqrt 2 .\)
Vậy phương trình đã cho có hai nghiệm phân biệt là
\[{x_1} = \frac{{\sqrt 5 - \sqrt 2 + \sqrt 5 + \sqrt 2 }}{{2 \cdot 1}} = \frac{{2\sqrt 5 }}{2} = \sqrt 5 ;\]
\[{x_1} = \frac{{\sqrt 5 - \sqrt 2 - \left( {\sqrt 5 + \sqrt 2 } \right)}}{{2 \cdot 1}} = \frac{{ - 2\sqrt 2 }}{2} = - \sqrt 2 .\]
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Gọi x là số xe được điều đến chở hàng lúc đầu (x ∈ ℤ, x > 3).
Số xe lúc sau là x – 3 (xe).
Số hàng mỗi xe phải chở lúc đầu là \(\frac{{67,5}}{x}\) (tấn).
Số hàng mỗi xe phải chở lúc sau là \(\frac{{67,5}}{{x - 3}}\) (tấn).
Theo bài, mỗi xe còn lại lúc sau phải chở thêm 0,25 tấn so với dự định ban đầu nên ta có phương trình: \[\frac{{67,5}}{{x - 3}} - \frac{{67,5}}{x} = 0,25.\]
Giải phương trình:
\(\frac{{67,5}}{{x - 3}} - \frac{{67,5}}{x} = 0,25\)
\(\frac{1}{{x - 3}} - \frac{1}{x} = \frac{{0,25}}{{67,5}}\)
\(\frac{1}{{x - 3}} - \frac{1}{x} = \frac{1}{{270}}\)
\(\frac{{270x}}{{270x\left( {x - 3} \right)}} - \frac{{270\left( {x - 3} \right)}}{{270x\left( {x - 3} \right)}} = \frac{{x\left( {x - 3} \right)}}{{270x\left( {x - 3} \right)}}\)
270x ‒ (270x – 810) = x2 ‒ 3x
270x – 270x + 810 = x2 ‒ 3x
x2 ‒ 3x ‒ 810 = 0
Ta có a = 1, b = ‒3, c = ‒81, ∆ = (‒3)2 ‒ 4.1.(‒810) = 9 + 3 240 = 3 249 > 0.
Vậy phương trình có hai nghiệm phân biệt là
\[{x_1} = \frac{{ - \left( { - 3} \right) + \sqrt {3\,\,249} }}{{2 \cdot 1}} = \frac{{3 + 57}}{2} = \frac{{60}}{2} = 30;\]
\[{x_2} = \frac{{ - \left( { - 3} \right) - \sqrt {3\,\,249} }}{{2 \cdot 1}} = \frac{{3 - 57}}{2} = \frac{{ - 54}}{2} = - 27.\]
Ta thấy chỉ có giá trị x1 = 30 thoả mãn điều kiện.
Vậy công ty đã điều 30 xe đến chở hàng.
Lời giải
Gọi x (km/h) là tốc độ của tàu chở hàng (x > 3).
Tốc độ của tàu khi xuôi dòng là x + 3 (km/h).
Thời gian tàu đi xuôi dòng từ A đến B là \(\frac{{40}}{{x + 3}}\) (giờ).
Tốc độ của tàu khi ngược dòng là x – 3 (km/h).
Thời gian tàu đi ngược dòng từ B đến C là \(\frac{{40 - 8}}{{x - 3}} = \frac{{32}}{{x - 3}}\) (giờ).
Theo bài, thời gian cả đi lẫn về không kể thời gian giao hàng là 2 giờ 40 phút = \(\frac{8}{3}\) giờ nên ta có phương trình: \(\frac{{40}}{{x + 3}} + \frac{{32}}{{x - 3}} = \frac{8}{3}.\)
Giải phương trình:
\(\frac{{40}}{{x + 3}} + \frac{{32}}{{x - 3}} = \frac{8}{3}\)
\(\frac{{40 \cdot 3\left( {x - 3} \right)}}{{3\left( {x + 3} \right)\left( {x - 3} \right)}} + \frac{{32 \cdot 3\left( {x + 3} \right)}}{{3\left( {x + 3} \right)\left( {x - 3} \right)}} = \frac{{8\left( {x + 3} \right)\left( {x - 3} \right)}}{{3\left( {x + 3} \right)\left( {x - 3} \right)}}\)
40.3(x – 3) + 32.3(x + 3) = 8(x + 3)(x – 3)
120x ‒ 360 + 96x + 288 = 8(x2 ‒ 9)
216x – 72 = 8x2 – 72
8x2 ‒ 216x = 0
8x(x ‒ 27) = 0
x = 0 hoặc x ‒ 27 = 0
x = 0 (không thỏa mãn) hoặc x = 27 (thoả mãn).
Vậy tốc độ của tàu chở hàng là 27 km/h.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
