Câu hỏi:
28/08/2024 245Giải các phương trình:
a) 2x2 – 5x + 2 = 0;
b) –x2 + 11x – 30 = 0;
c) 5x2 – 7x – 6 = 0;
d) \[5{x^2}--2\sqrt 5 x + 1 = 0;\]
e) \(\frac{1}{{16}}{x^2} + \frac{1}{8}x = \frac{1}{2};\)
g) \({x^2} - \left( {\sqrt 5 - \sqrt 2 } \right)x - \sqrt {10} = 0.\)
Sách mới 2k7: Bộ 20 đề minh họa Toán, Lí, Hóa, Văn, Sử, Địa…. form chuẩn 2025 của Bộ giáo dục (chỉ từ 110k).
Quảng cáo
Trả lời:
a) 2x2 – 5x + 2 = 0
Ta có: a = 2, b = ‒5, c = 2, ∆ = (‒5)2 ‒ 4.2.2 = 25 ‒ 16 = 9 > 0.
Vậy phương trình đã cho có hai nghiệm phân biệt là
\[{x_1} = \frac{{ - \left( { - 5} \right) + \sqrt 9 }}{{2 \cdot 2}} = \frac{{5 + 3}}{4} = \frac{8}{4} = 2;\]
\[{x_2} = \frac{{ - \left( { - 5} \right) - \sqrt 9 }}{{2 \cdot 2}} = \frac{{5 - 3}}{4} = \frac{2}{4} = \frac{1}{2}.\]
b) – x2 + 11x – 30 = 0
Ta có: a = ‒1, b = 11, c = ‒30, ∆ = 112 ‒ 4.(‒1).(‒30) = 121 ‒ 120 = 1 > 0
Vậy phương trình đã cho có hai nghiệm phân biệt là
\[{x_1} = \frac{{ - 11 + \sqrt 1 }}{{2 \cdot \left( { - 1} \right)}} = \frac{{ - 11 + 1}}{{ - 2}} = \frac{{ - 10}}{{ - 2}} = 5;\]
\[{x_2} = \frac{{ - 11 - \sqrt 1 }}{{2 \cdot \left( { - 1} \right)}} = \frac{{ - 11 - 1}}{{ - 2}} = \frac{{ - 12}}{{ - 2}} = 6.\]
c) 5x2 – 7x – 6 = 0
Ta có: a = 5, b = ‒7, c = ‒6, ∆ = (‒7)2 ‒ 4.5.(‒6) = 49 + 120 = 169 > 0.
Vậy phương trình đã cho có hai nghiệm phân biệt là
\[{x_1} = \frac{{ - \left( { - 7} \right) + \sqrt {169} }}{{2 \cdot 5}} = \frac{{7 + 13}}{{10}} = \frac{{20}}{{10}} = 2;\]
\[{x_2} = \frac{{ - \left( { - 7} \right) - \sqrt {169} }}{{2 \cdot 5}} = \frac{{7 - 13}}{{10}} = \frac{{ - 6}}{{10}} = - \frac{3}{5}.\]
d) \[5{x^2}--2\sqrt 5 x + 1 = 0\]
Ta có: a = 5, \[b = - 2\sqrt 5 ,\] c = 1, \[\Delta = {\left( { - 2\sqrt 5 } \right)^2} - 4 \cdot 5 \cdot 1 = 20 - 20 = 0.\]
Vậy phương trình đã cho có nghiệm kép là
\({x_1} = {x_2} = \frac{{ - \left( { - 2\sqrt 5 } \right)}}{{2 \cdot 5}} = \frac{{2\sqrt 5 }}{{10}} = \frac{{\sqrt 5 }}{5}.\)
e) \(\frac{1}{{16}}{x^2} + \frac{1}{8}x = \frac{1}{2}\)
x2 + 2x ‒ 8 = 0.
Ta có a = 1, b = 2, c = ‒8, ∆ = 22 ‒ 4.1.(‒8) = 4 + 32 = 36 > 0.
Vậy phương trình đã cho có hai nghiệm phân biệt là
\[{x_1} = \frac{{ - 2 + \sqrt {36} }}{{2 \cdot 1}} = \frac{{ - 2 + 6}}{2} = \frac{4}{2} = 2;\]
\[{x_2} = \frac{{ - 2 - \sqrt {36} }}{{2 \cdot 1}} = \frac{{ - 2 - 6}}{2} = \frac{{ - 8}}{2} = - 4.\]
g) \({x^2} - \left( {\sqrt 5 - \sqrt 2 } \right)x - \sqrt {10} = 0.\)
Ta có \[a = 1,\,\,b = - \sqrt 5 + \sqrt 2 ,\,\,c = - \sqrt {10} ,\]
\[\Delta = {\left[ { - \left( {\sqrt 5 - \sqrt 2 } \right)} \right]^2} - 4 \cdot 1 \cdot \left( { - \sqrt {10} } \right)\]
\[ = 5 - 2\sqrt {10} + 2 + 4\sqrt {10} \]
\[ = 5 + 2\sqrt {10} + 2 = {\left( {\sqrt 5 + \sqrt 2 } \right)^2} > 0.\]
Nên \(\sqrt \Delta = \sqrt {{{\left( {\sqrt 5 + \sqrt 2 } \right)}^2}} = \left| {\sqrt 5 + \sqrt 2 } \right| = \sqrt 5 + \sqrt 2 .\)
Vậy phương trình đã cho có hai nghiệm phân biệt là
\[{x_1} = \frac{{\sqrt 5 - \sqrt 2 + \sqrt 5 + \sqrt 2 }}{{2 \cdot 1}} = \frac{{2\sqrt 5 }}{2} = \sqrt 5 ;\]
\[{x_1} = \frac{{\sqrt 5 - \sqrt 2 - \left( {\sqrt 5 + \sqrt 2 } \right)}}{{2 \cdot 1}} = \frac{{ - 2\sqrt 2 }}{2} = - \sqrt 2 .\]
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Có hai đội thợ phải hoàn thành việc quét sơn một văn phòng. Nếu mỗi đội làm riêng thì đội I hoàn thành công việc nhanh hơn đội II thời gian là 6 ngày. Còn nếu họ làm việc cùng nhau thì chỉ cần 4 ngày sẽ xong công việc. Hỏi nếu làm riêng thì thời gian hoàn thành công việc của mỗi đội là bao lâu?
Câu 2:
Bác Thanh có một mảnh đất hình chữ nhật với chiều rộng bằng \(\frac{2}{3}\) chiều dài. Do quy hoạch mở rộng đường nên chiều dài và chiều rộng mảnh đất đều giảm đi 5 m, do đó diện tích mảnh đất còn lại chỉ bằng 84% diện tích lúc đầu. Tính diện tích mảnh đất lúc đầu.
Câu 3:
Một công ty điều một số xe tải để chở 67,5 tấn hàng. Khi đến kho hàng thì có 3 xe bị hỏng nên để chở hết số hàng thì mỗi xe còn lại phải chở thêm 0,25 tấn so với dự định ban đầu. Hỏi số xe được điều đến chở hàng là bao nhiêu? Biết rằng khối lượng hàng mỗi xe chở là như nhau.
Câu 4:
Hai dung dịch muối có tổng khối lượng bằng 600 kg. Lượng muối trong dung dịch I là 6 kg, lượng muối trong dung dịch II là 4 kg. Biết nồng độ muối trong dung dịch I nhiều hơn nồng độ muối trong dung dịch II là 2%. Tính khối lượng mỗi dung dịch nói trên.
Câu 5:
Giải các phương trình (không dùng công thức nghiệm):
a) 3x2 + 7x = 0
b) \(\frac{2}{3}{x^2} - \frac{4}{{15}} = 0;\)
c) y2 – 6y + 8 = 0;
d) (x – 2)2 = (x – 2)(3x + 5).
Câu 6:
Hai bến sông A và B cách nhau 40 km. Một tàu chở hàng xuôi dòng từ bến A đến bến B để giao hàng. Sau khi giao hàng xong, tàu đi ngược dòng trở về và đỗ ở bến C cách bến A 8 km (Hình 1). Tính tốc độ của tàu chở hàng đó, biết rằng tốc độ của dòng nước là 3 km/h và thời gian cả đi lẫn về không kể thời gian giao hàng là 2 giờ 40 phút.
Bộ 10 đề thi cuối kì 1 Toán 9 Kết nối tri thức có đáp án - Đề 01
Dạng 6: Bài toán về tăng giá, giảm giá và tăng, giảm dân số có đáp án
23 câu Trắc nghiệm Toán 9 Bài 1: Căn thức bậc hai có đáp án
Bộ 10 đề thi cuối kì 1 Toán 9 Kết nối tri thức có đáp án - Đề 02
Bộ 10 đề thi cuối kì 1 Toán 9 Kết nối tri thức có đáp án - Đề 06
Bộ 10 đề thi cuối kì 1 Toán 9 Kết nối tri thức có đáp án - Đề 03
Bộ 10 đề thi cuối kì 1 Toán 9 Kết nối tri thức có đáp án - Đề 04
Bộ 10 đề thi cuối kì 1 Toán 9 Kết nối tri thức có đáp án - Đề 05
về câu hỏi!