Câu hỏi:

28/08/2024 1,615

Giải các phương trình:

a) 2x2 – 5x + 2 = 0;

b) –x2 + 11x – 30 = 0;

c) 5x2 – 7x – 6 = 0;

d) \[5{x^2}--2\sqrt 5 x + 1 = 0;\]

e) \(\frac{1}{{16}}{x^2} + \frac{1}{8}x = \frac{1}{2};\)

g) \({x^2} - \left( {\sqrt 5 - \sqrt 2 } \right)x - \sqrt {10} = 0.\)

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

a) 2x2 – 5x + 2 = 0

Ta có: a = 2, b = ‒5, c = 2, ∆ = (‒5)2 ‒ 4.2.2 = 25 ‒ 16 = 9 > 0.

Vậy phương trình đã cho có hai nghiệm phân biệt là

\[{x_1} = \frac{{ - \left( { - 5} \right) + \sqrt 9 }}{{2 \cdot 2}} = \frac{{5 + 3}}{4} = \frac{8}{4} = 2;\]

\[{x_2} = \frac{{ - \left( { - 5} \right) - \sqrt 9 }}{{2 \cdot 2}} = \frac{{5 - 3}}{4} = \frac{2}{4} = \frac{1}{2}.\]

b) – x2 + 11x – 30 = 0

Ta có: a = ‒1, b = 11, c = ‒30, ∆ = 112 ‒ 4.(‒1).(‒30) = 121 ‒ 120 = 1 > 0

Vậy phương trình đã cho có hai nghiệm phân biệt là

\[{x_1} = \frac{{ - 11 + \sqrt 1 }}{{2 \cdot \left( { - 1} \right)}} = \frac{{ - 11 + 1}}{{ - 2}} = \frac{{ - 10}}{{ - 2}} = 5;\]

\[{x_2} = \frac{{ - 11 - \sqrt 1 }}{{2 \cdot \left( { - 1} \right)}} = \frac{{ - 11 - 1}}{{ - 2}} = \frac{{ - 12}}{{ - 2}} = 6.\]

c) 5x2 – 7x – 6 = 0

Ta có: a = 5, b = ‒7, c = ‒6, ∆ = (‒7)2 ‒ 4.5.(‒6) = 49 + 120 = 169 > 0.

Vậy phương trình đã cho có hai nghiệm phân biệt là

\[{x_1} = \frac{{ - \left( { - 7} \right) + \sqrt {169} }}{{2 \cdot 5}} = \frac{{7 + 13}}{{10}} = \frac{{20}}{{10}} = 2;\]

\[{x_2} = \frac{{ - \left( { - 7} \right) - \sqrt {169} }}{{2 \cdot 5}} = \frac{{7 - 13}}{{10}} = \frac{{ - 6}}{{10}} = - \frac{3}{5}.\]

d) \[5{x^2}--2\sqrt 5 x + 1 = 0\]

Ta có: a = 5, \[b = - 2\sqrt 5 ,\] c = 1, \[\Delta = {\left( { - 2\sqrt 5 } \right)^2} - 4 \cdot 5 \cdot 1 = 20 - 20 = 0.\]

Vậy phương trình đã cho có nghiệm kép là

\({x_1} = {x_2} = \frac{{ - \left( { - 2\sqrt 5 } \right)}}{{2 \cdot 5}} = \frac{{2\sqrt 5 }}{{10}} = \frac{{\sqrt 5 }}{5}.\)

e) \(\frac{1}{{16}}{x^2} + \frac{1}{8}x = \frac{1}{2}\)

 x2 + 2x ‒ 8 = 0.

Ta có a = 1, b = 2, c = ‒8, ∆ = 22 ‒ 4.1.(‒8) = 4 + 32 = 36 > 0.

Vậy phương trình đã cho có hai nghiệm phân biệt là

\[{x_1} = \frac{{ - 2 + \sqrt {36} }}{{2 \cdot 1}} = \frac{{ - 2 + 6}}{2} = \frac{4}{2} = 2;\]

\[{x_2} = \frac{{ - 2 - \sqrt {36} }}{{2 \cdot 1}} = \frac{{ - 2 - 6}}{2} = \frac{{ - 8}}{2} = - 4.\]

g) \({x^2} - \left( {\sqrt 5 - \sqrt 2 } \right)x - \sqrt {10} = 0.\)

Ta có \[a = 1,\,\,b = - \sqrt 5 + \sqrt 2 ,\,\,c = - \sqrt {10} ,\]

\[\Delta = {\left[ { - \left( {\sqrt 5 - \sqrt 2 } \right)} \right]^2} - 4 \cdot 1 \cdot \left( { - \sqrt {10} } \right)\]

   \[ = 5 - 2\sqrt {10} + 2 + 4\sqrt {10} \]

   \[ = 5 + 2\sqrt {10} + 2 = {\left( {\sqrt 5 + \sqrt 2 } \right)^2} > 0.\]

Nên \(\sqrt \Delta   = \sqrt {{{\left( {\sqrt 5 + \sqrt 2 } \right)}^2}} = \left| {\sqrt 5 + \sqrt 2 } \right| = \sqrt 5 + \sqrt 2 .\)

Vậy phương trình đã cho có hai nghiệm phân biệt là

\[{x_1} = \frac{{\sqrt 5 - \sqrt 2 + \sqrt 5 + \sqrt 2 }}{{2 \cdot 1}} = \frac{{2\sqrt 5 }}{2} = \sqrt 5 ;\]

\[{x_1} = \frac{{\sqrt 5 - \sqrt 2 - \left( {\sqrt 5 + \sqrt 2 } \right)}}{{2 \cdot 1}} = \frac{{ - 2\sqrt 2 }}{2} = - \sqrt 2 .\]

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Gọi x là số xe được điều đến chở hàng lúc đầu (x , x > 3).

Số xe lúc sau là x – 3 (xe).

Số hàng mỗi xe phải chở lúc đầu là \(\frac{{67,5}}{x}\) (tấn).

Số hàng mỗi xe phải chở lúc sau là \(\frac{{67,5}}{{x - 3}}\) (tấn).

Theo bài, mỗi xe còn lại lúc sau phải chở thêm 0,25 tấn so với dự định ban đầu nên ta có phương trình: \[\frac{{67,5}}{{x - 3}} - \frac{{67,5}}{x} = 0,25.\]

Giải phương trình:

\(\frac{{67,5}}{{x - 3}} - \frac{{67,5}}{x} = 0,25\)

\(\frac{1}{{x - 3}} - \frac{1}{x} = \frac{{0,25}}{{67,5}}\)

\(\frac{1}{{x - 3}} - \frac{1}{x} = \frac{1}{{270}}\)

\(\frac{{270x}}{{270x\left( {x - 3} \right)}} - \frac{{270\left( {x - 3} \right)}}{{270x\left( {x - 3} \right)}} = \frac{{x\left( {x - 3} \right)}}{{270x\left( {x - 3} \right)}}\)

270x ‒ (270x 810) = x2 ‒ 3x

270x – 270x + 810 = x2 ‒ 3x

x2 ‒ 3x ‒ 810 = 0

Ta có a = 1, b = ‒3, c = ‒81, ∆ = (‒3)2 ‒ 4.1.(‒810) = 9 + 3 240 = 3 249 > 0.

Vậy phương trình có hai nghiệm phân biệt là

\[{x_1} = \frac{{ - \left( { - 3} \right) + \sqrt {3\,\,249} }}{{2 \cdot 1}} = \frac{{3 + 57}}{2} = \frac{{60}}{2} = 30;\]

\[{x_2} = \frac{{ - \left( { - 3} \right) - \sqrt {3\,\,249} }}{{2 \cdot 1}} = \frac{{3 - 57}}{2} = \frac{{ - 54}}{2} = - 27.\]

Ta thấy chỉ có giá trị x1 = 30 thoả mãn điều kiện.

Vậy công ty đã điều 30 xe đến chở hàng.

Lời giải

Gọi x (kg) là khối lượng dung dịch I (0 < x < 600).

Khối lượng dung dịch II là 600 – x (kg).

Nồng độ muối trong dung dịch I là \[\frac{6}{x} \cdot 100\,\,\left( \% \right).\]

Nồng độ muối trong dung dịch II là \[\frac{4}{{600 - x}} \cdot 100\,\,\left( \% \right).\]

Theo bài, nồng độ muối trong dung dịch I nhiều hơn nồng độ muối trong dung dịch II là 2% nên ta có phương trình:

\(\frac{6}{x} \cdot 100 - \frac{4}{{600 - x}} \cdot 100 = 2.\)

Giải phương trình:

\(\frac{6}{x} \cdot 100 - \frac{4}{{600 - x}} \cdot 100 = 2\)

\(\frac{6}{x} - \frac{4}{{600 - x}} = \frac{2}{{100}}\)

\(\frac{6}{x} - \frac{4}{{600 - x}} = \frac{1}{{50}}\)

\(\frac{{6 \cdot 50\left( {600 - x} \right)}}{{50x\left( {600 - x} \right)}} - \frac{{4 \cdot 50x}}{{50x\left( {600 - x} \right)}} = \frac{{x\left( {600 - x} \right)}}{{50x\left( {600 - x} \right)}}\)

180 000 – 300x – 200x = 600x – x2

x21 100x + 180 000 = 0

Ta có a = 1, b = ‒550, c = 180 000, ∆ = (‒550)21 . 180 000 = 122 500 > 0.

Vậy phương trình có hai nghiệm phân biệt là

\[{x_1} = \frac{{ - \left( { - 550} \right) + \sqrt {122\,\,500} }}{1} = \frac{{550 + 350}}{1} = 900;\]

\[{x_2} = \frac{{ - \left( { - 550} \right) - \sqrt {122\,\,500} }}{1} = \frac{{550 - 350}}{1} = 200.\]

Ta thấy chỉ có giá trị x2 = 200 thoả mãn điều kiện.

Vậy khối lượng dung dịch I là 200 kg, khối lượng dung dịch II là 600 ‒ 200 = 400 kg.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay