Bác Thanh có một mảnh đất hình chữ nhật với chiều rộng bằng \(\frac{2}{3}\) chiều dài. Do quy hoạch mở rộng đường nên chiều dài và chiều rộng mảnh đất đều giảm đi 5 m, do đó diện tích mảnh đất còn lại chỉ bằng 84% diện tích lúc đầu. Tính diện tích mảnh đất lúc đầu.
Bác Thanh có một mảnh đất hình chữ nhật với chiều rộng bằng \(\frac{2}{3}\) chiều dài. Do quy hoạch mở rộng đường nên chiều dài và chiều rộng mảnh đất đều giảm đi 5 m, do đó diện tích mảnh đất còn lại chỉ bằng 84% diện tích lúc đầu. Tính diện tích mảnh đất lúc đầu.
Quảng cáo
Trả lời:
Gọi x (m) là chiều dài mảnh đất lúc đầu (x > 5).
Chiều rộng của mảnh đất lúc đầu là \(\frac{2}{3}x{\rm{\;(m)}}{\rm{.}}\)
Diện tích mảnh đất lúc đầu là: \[x \cdot \frac{2}{3}x = \frac{2}{3}{x^2}{\rm{\;(}}{{\rm{m}}^2}{\rm{)}}{\rm{.}}\]
Chiều dài của mảnh đất sau khi giảm là x – 5 (m).
Chiều rộng của mảnh đất sau khi giảm là \(\frac{2}{3}x - 5{\rm{\;(m)}}{\rm{.}}\)
Diện tích mảnh đất sau khi giảm là: \[\left( {x - 5} \right)\left( {\frac{2}{3}x - 5} \right){\rm{\;(m)}}{\rm{.}}\]
Diện tích mảnh đất còn lại bằng 84% diện tích lúc đầu nên ta có phương trình:
\(\left( {x - 5} \right)\left( {\frac{2}{3}x - 5} \right) = 84\% \cdot \frac{2}{3}{x^2}.\)
Giải phương trình:
\(\left( {x - 5} \right)\left( {\frac{2}{3}x - 5} \right) = 84\% \cdot \frac{2}{3}{x^2}\)
\(\frac{2}{3}{x^2} - 5x - \frac{{10}}{3}x + 25 = \frac{{14}}{{25}}{x^2}\)
50x2 – 375x – 250x + 1 875 – 42x2 = 0
8x2 – 625x + 1 875 = 0
Ta có a = 8, b = ‒625, c = 1 875, ∆ = (‒625)2 ‒ 4 . 8 . 1 875 = 330 625 > 0 và \(\sqrt \Delta = \sqrt {330\,\,625} = 575.\)
Vậy phương tình có hai nghiệm phân biệt là
\[{x_1} = \frac{{625 + 575}}{{2 \cdot 8}} = \frac{{1\,\,200}}{{16}} = 75;\]
\[{x_2} = \frac{{625 - 575}}{{2 \cdot 8}} = \frac{{50}}{{16}} = 3,125.\]
Ta thấy chỉ có giá trị x1 = 75 thoả mãn điều kiện.
Do đó mảnh đất lúc đầu có chiều dài là 75 m, chiều rộng là \[\frac{2}{3} \cdot 75 = 50{\rm{\;(m)}}{\rm{.}}\]
Vậy diện tích mảnh đất lúc đầu là 75.50 = 3 750 m2.
Hot: 1000+ Đề thi giữa kì 2 file word cấu trúc mới 2026 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Gọi x là số xe được điều đến chở hàng lúc đầu (x ∈ ℤ, x > 3).
Số xe lúc sau là x – 3 (xe).
Số hàng mỗi xe phải chở lúc đầu là \(\frac{{67,5}}{x}\) (tấn).
Số hàng mỗi xe phải chở lúc sau là \(\frac{{67,5}}{{x - 3}}\) (tấn).
Theo bài, mỗi xe còn lại lúc sau phải chở thêm 0,25 tấn so với dự định ban đầu nên ta có phương trình: \[\frac{{67,5}}{{x - 3}} - \frac{{67,5}}{x} = 0,25.\]
Giải phương trình:
\(\frac{{67,5}}{{x - 3}} - \frac{{67,5}}{x} = 0,25\)
\(\frac{1}{{x - 3}} - \frac{1}{x} = \frac{{0,25}}{{67,5}}\)
\(\frac{1}{{x - 3}} - \frac{1}{x} = \frac{1}{{270}}\)
\(\frac{{270x}}{{270x\left( {x - 3} \right)}} - \frac{{270\left( {x - 3} \right)}}{{270x\left( {x - 3} \right)}} = \frac{{x\left( {x - 3} \right)}}{{270x\left( {x - 3} \right)}}\)
270x ‒ (270x – 810) = x2 ‒ 3x
270x – 270x + 810 = x2 ‒ 3x
x2 ‒ 3x ‒ 810 = 0
Ta có a = 1, b = ‒3, c = ‒81, ∆ = (‒3)2 ‒ 4.1.(‒810) = 9 + 3 240 = 3 249 > 0.
Vậy phương trình có hai nghiệm phân biệt là
\[{x_1} = \frac{{ - \left( { - 3} \right) + \sqrt {3\,\,249} }}{{2 \cdot 1}} = \frac{{3 + 57}}{2} = \frac{{60}}{2} = 30;\]
\[{x_2} = \frac{{ - \left( { - 3} \right) - \sqrt {3\,\,249} }}{{2 \cdot 1}} = \frac{{3 - 57}}{2} = \frac{{ - 54}}{2} = - 27.\]
Ta thấy chỉ có giá trị x1 = 30 thoả mãn điều kiện.
Vậy công ty đã điều 30 xe đến chở hàng.
Lời giải
Gọi x (kg) là khối lượng dung dịch I (0 < x < 600).
Khối lượng dung dịch II là 600 – x (kg).
Nồng độ muối trong dung dịch I là \[\frac{6}{x} \cdot 100\,\,\left( \% \right).\]
Nồng độ muối trong dung dịch II là \[\frac{4}{{600 - x}} \cdot 100\,\,\left( \% \right).\]
Theo bài, nồng độ muối trong dung dịch I nhiều hơn nồng độ muối trong dung dịch II là 2% nên ta có phương trình:
\(\frac{6}{x} \cdot 100 - \frac{4}{{600 - x}} \cdot 100 = 2.\)
Giải phương trình:
\(\frac{6}{x} \cdot 100 - \frac{4}{{600 - x}} \cdot 100 = 2\)
\(\frac{6}{x} - \frac{4}{{600 - x}} = \frac{2}{{100}}\)
\(\frac{6}{x} - \frac{4}{{600 - x}} = \frac{1}{{50}}\)
\(\frac{{6 \cdot 50\left( {600 - x} \right)}}{{50x\left( {600 - x} \right)}} - \frac{{4 \cdot 50x}}{{50x\left( {600 - x} \right)}} = \frac{{x\left( {600 - x} \right)}}{{50x\left( {600 - x} \right)}}\)
180 000 – 300x – 200x = 600x – x2
x2 ‒ 1 100x + 180 000 = 0
Ta có a = 1, b’ = ‒550, c = 180 000, ∆’ = (‒550)2 ‒ 1 . 180 000 = 122 500 > 0.
Vậy phương trình có hai nghiệm phân biệt là
\[{x_1} = \frac{{ - \left( { - 550} \right) + \sqrt {122\,\,500} }}{1} = \frac{{550 + 350}}{1} = 900;\]
\[{x_2} = \frac{{ - \left( { - 550} \right) - \sqrt {122\,\,500} }}{1} = \frac{{550 - 350}}{1} = 200.\]
Ta thấy chỉ có giá trị x2 = 200 thoả mãn điều kiện.
Vậy khối lượng dung dịch I là 200 kg, khối lượng dung dịch II là 600 ‒ 200 = 400 kg.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
