Câu hỏi:

28/08/2024 2,882 Lưu

Có hai đội thợ phải hoàn thành việc quét sơn một văn phòng. Nếu mỗi đội làm riêng thì đội I hoàn thành công việc nhanh hơn đội II thời gian là 6 ngày. Còn nếu họ làm việc cùng nhau thì chỉ cần 4 ngày sẽ xong công việc. Hỏi nếu làm riêng thì thời gian hoàn thành công việc của mỗi đội là bao lâu?

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Gọi x (ngày) là thời gian đội I hoàn thành công việc nếu làm riêng (x > 0).

Thời gian đội II hoàn thành công việc nếu làm riêng là x + 6 (ngày).

Trong 1 ngày, đội I làm được \(\frac{1}{x}\) công việc, đội II làm được \(\frac{1}{{x + 6}}\) công việc.

Nếu cả hai đội thợ làm việc cùng nhau thì chỉ cần 4 ngày sẽ xong công việc nên trong 1 ngày, cả hai đội làm được \(\frac{1}{4}\) công việc.

Khi đó, ta có phương trình: \(\frac{1}{x} + \frac{1}{{x + 6}} = \frac{1}{4}.\)

Giải phương trình:

\(\frac{1}{x} + \frac{1}{{x + 6}} = \frac{1}{4}\)

\[\frac{{4\left( {x + 6} \right)}}{{4x\left( {x + 6} \right)}} + \frac{{4x}}{{4x\left( {x + 6} \right)}} = \frac{{x\left( {x + 6} \right)}}{{4x\left( {x + 6} \right)}}\]

4x + 24 + 4x = x2 + 6x

x2 ‒ 2x ‒ 24 = 0

Ta có a = 1, b = ‒1, c = ‒24, ∆ = (‒1)2 ‒ 1.(‒24) = 1 + 24 = 25 > 0.

Vậy phương trình có hai nghiệm phân biệt là

\[{x_1} = \frac{{ - \left( { - 1} \right) + \sqrt {25} }}{1} = \frac{{1 + 5}}{1} = 6;\]

\[{x_2} = \frac{{ - \left( { - 1} \right) - \sqrt {25} }}{1} = \frac{{1 - 5}}{1} = - 4.\]

Ta thấy chỉ có giá trị x1 = 6 thoả mãn điều kiện.

Vậy nếu làm riêng, đội I sẽ hoàn thành công việc trong 6 ngày, đội II sẽ hoàn thành công việc trong 6 + 6 = 12 ngày.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Gọi x là số xe được điều đến chở hàng lúc đầu (x , x > 3).

Số xe lúc sau là x – 3 (xe).

Số hàng mỗi xe phải chở lúc đầu là \(\frac{{67,5}}{x}\) (tấn).

Số hàng mỗi xe phải chở lúc sau là \(\frac{{67,5}}{{x - 3}}\) (tấn).

Theo bài, mỗi xe còn lại lúc sau phải chở thêm 0,25 tấn so với dự định ban đầu nên ta có phương trình: \[\frac{{67,5}}{{x - 3}} - \frac{{67,5}}{x} = 0,25.\]

Giải phương trình:

\(\frac{{67,5}}{{x - 3}} - \frac{{67,5}}{x} = 0,25\)

\(\frac{1}{{x - 3}} - \frac{1}{x} = \frac{{0,25}}{{67,5}}\)

\(\frac{1}{{x - 3}} - \frac{1}{x} = \frac{1}{{270}}\)

\(\frac{{270x}}{{270x\left( {x - 3} \right)}} - \frac{{270\left( {x - 3} \right)}}{{270x\left( {x - 3} \right)}} = \frac{{x\left( {x - 3} \right)}}{{270x\left( {x - 3} \right)}}\)

270x ‒ (270x 810) = x2 ‒ 3x

270x – 270x + 810 = x2 ‒ 3x

x2 ‒ 3x ‒ 810 = 0

Ta có a = 1, b = ‒3, c = ‒81, ∆ = (‒3)2 ‒ 4.1.(‒810) = 9 + 3 240 = 3 249 > 0.

Vậy phương trình có hai nghiệm phân biệt là

\[{x_1} = \frac{{ - \left( { - 3} \right) + \sqrt {3\,\,249} }}{{2 \cdot 1}} = \frac{{3 + 57}}{2} = \frac{{60}}{2} = 30;\]

\[{x_2} = \frac{{ - \left( { - 3} \right) - \sqrt {3\,\,249} }}{{2 \cdot 1}} = \frac{{3 - 57}}{2} = \frac{{ - 54}}{2} = - 27.\]

Ta thấy chỉ có giá trị x1 = 30 thoả mãn điều kiện.

Vậy công ty đã điều 30 xe đến chở hàng.

Lời giải

Gọi x (km/h) là tốc độ của tàu chở hàng (x > 3).

Tốc độ của tàu khi xuôi dòng là x + 3 (km/h).

Thời gian tàu đi xuôi dòng từ A đến B là \(\frac{{40}}{{x + 3}}\) (giờ).

Tốc độ của tàu khi ngược dòng là x – 3 (km/h).

Thời gian tàu đi ngược dòng từ B đến C là \(\frac{{40 - 8}}{{x - 3}} = \frac{{32}}{{x - 3}}\) (giờ).

Theo bài, thời gian cả đi lẫn về không kể thời gian giao hàng là 2 giờ 40 phút = \(\frac{8}{3}\) giờ nên ta có phương trình: \(\frac{{40}}{{x + 3}} + \frac{{32}}{{x - 3}} = \frac{8}{3}.\)

Giải phương trình:

\(\frac{{40}}{{x + 3}} + \frac{{32}}{{x - 3}} = \frac{8}{3}\)

\(\frac{{40 \cdot 3\left( {x - 3} \right)}}{{3\left( {x + 3} \right)\left( {x - 3} \right)}} + \frac{{32 \cdot 3\left( {x + 3} \right)}}{{3\left( {x + 3} \right)\left( {x - 3} \right)}} = \frac{{8\left( {x + 3} \right)\left( {x - 3} \right)}}{{3\left( {x + 3} \right)\left( {x - 3} \right)}}\)

40.3(x – 3) + 32.3(x + 3) = 8(x + 3)(x – 3)

120x ‒ 360 + 96x + 288 = 8(x29)

216x – 72 = 8x2 – 72

8x2 ‒ 216x = 0

8x(x ‒ 27) = 0

x = 0 hoặc x ‒ 27 = 0

x = 0 (không thỏa mãn) hoặc x = 27 (thoả mãn).

Vậy tốc độ của tàu chở hàng là 27 km/h.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP