Tìm hai số a và b trong mỗi trường hợp sau:
a) a + b = 11 và a2 + b2 = 61;
b) ab = 24; a2 + b2 = 73 và a > b.
Tìm hai số a và b trong mỗi trường hợp sau:
a) a + b = 11 và a2 + b2 = 61;
b) ab = 24; a2 + b2 = 73 và a > b.
Quảng cáo
Trả lời:

a) Ta có (a + b)2 = a2 + 2ab + b2 hay (a + b)2 = (a2 + b2) + 2ab
Suy ra 112 = 61 + 2ab
121 = 61 + 2ab.
2ab = 60
ab = 30.
Với a + b = 11, ab = 30 ta có a, b là hai nghiệm của phương trình x2 ‒ 11x + 30 = 0.
Ta có: ∆ = (‒11)2 ‒ 4.1.30 = 121 ‒ 120 = 1 > 0 nên phương trình có hai nghiệm phân biệt là:
\[{x_1} = \frac{{ - \left( { - 11} \right) + \sqrt 1 }}{{2 \cdot 1}} = \frac{{11 + 1}}{2} = \frac{{12}}{2} = 6;\]
\[{x_2} = \frac{{ - \left( { - 11} \right) - \sqrt 1 }}{{2 \cdot 1}} = \frac{{11 - 1}}{2} = \frac{{10}}{2} = 5.\]
Vậy a = 5; b = 6 hoặc a = 6; b = 5.
b) Ta có (a + b)2 = a2 + 2ab + b2 = (a2 + b2) + 2ab
= 73 + 2.24 = 73 + 48 = 121.
Suy ra a + b = 11 hoặc a + b = –11.
• Với a + b = 11 và ab = 24, ta có a, b là nghiệm của phương trình x2 ‒ 11x + 24 = 0.
Ta có: ∆ = (‒11)2 ‒ 4.1.24 = 121 ‒ 96 = 25 > 0 nên phương trình có hai nghiệm phân biệt là
\[{x_1} = \frac{{ - \left( { - 11} \right) + \sqrt {25} }}{{2 \cdot 1}} = \frac{{11 + 5}}{2} = \frac{{16}}{2} = 8;\]
\[{x_2} = \frac{{ - \left( { - 11} \right) - \sqrt {25} }}{{2 \cdot 1}} = \frac{{11 - 5}}{2} = \frac{6}{2} = 3.\]
Theo bài, a > b nên trong trường hợp này ta có a = 8; b = 3.
• Với a + b = –11 và ab = 24, ta có a, b là nghiệm của phương trình x2 + 11x + 24 = 0.
Ta có: ∆ = 112 ‒ 4.1.24 = 121 ‒ 96 = 25 > 0 nên phương trình có hai nghiệm phân biệt là
\[{x_1} = \frac{{ - 11 + \sqrt {25} }}{{2 \cdot 1}} = \frac{{ - 11 + 5}}{2} = \frac{{ - 6}}{2} = - 3;\]
\[{x_2} = \frac{{ - 11 - \sqrt {25} }}{{2 \cdot 1}} = \frac{{ - 11 - 5}}{2} = \frac{{ - 16}}{2} = - 8.\]
Theo bài, a > b nên trong trường hợp này ta có a = ‒3; b = ‒8.
Vậy a = 8; b = 3 hoặc a = ‒3; b = ‒8.
Hot: 500+ Đề thi vào 10 file word các Sở Hà Nội, TP Hồ Chí Minh có đáp án 2025 (chỉ từ 100k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Xét phương trình x2 – 3x – 40 = 0.
Ta có ∆ = (–3)2 – 4.1.(–40) = 9 + 160 = 169 > 0, nên phương trình đã cho có hai nghiệm phân biệt x1, x2.
Theo định lí Viète, ta có:
\(S = {x_1} + {x_2} = - \frac{b}{a} = - \frac{{ - 3}}{1} = 3;\,\,\,P = {x_1}{x_2} = \frac{c}{a} = \frac{{ - 40}}{1} = - 40.\)
a) \[A = x_1^2 + x_2^2 - x_1^2{x_2} - {x_1}x_2^2\]
\[ = x_1^2 + x_2^2 + 2{x_1}{x_2} - 2{x_1}{x_2} - {x_1}{x_2}\left( {{x_1} + {x_2}} \right)\]
\[ = {\left( {{x_1} + {x_2}} \right)^2} - 2{x_2}{x_2} - {x_1}{x_2}\left( {{x_1} + {x_2}} \right)\]
Thay x1 + x2 = 3 và x1x2 = ‒ 40 vào biểu thức trên, ta được:
A = 32 ‒ 2.(‒40) ‒ (‒40).3
= 9 + 80 + 120 = 209.
b) \[B = 3{x_1} + 3{x_2} - 2x_1^2 - 2x_2^2\]
\[ = 3\left( {{x_1} + {x_2}} \right) - 2\left( {x_1^2 + x_2^2} \right)\]
\[ = 3\left( {{x_1} + {x_2}} \right) - 2\left( {x_1^2 + x_2^2 + 2{x_1}{x_2} - 2{x_1}{x_2}} \right)\]
\[ = 3\left( {{x_1} + {x_2}} \right) - 2\left[ {{{\left( {{x_1} + {x_2}} \right)}^2} - 2{x_1}{x_2}} \right]\]
Thay x1 + x2 = 3 và x1x2 = ‒ 40 vào biểu thức trên, ta được:
B = 3.3 ‒ 2[32 ‒ 2.(‒40)]
= 9 ‒ 2(9 + 80) = 9 – 2.89
= 9 ‒ 178 = ‒ 169.
c) \(C = \frac{{{x_2}}}{{{x_1} + 3}} + \frac{{{x_1}}}{{{x_2} + 3}} = \frac{{{x_2}\left( {{x_2} + 3} \right) + {x_1}\left( {{x_1} + 3} \right)}}{{\left( {{x_1} + 3} \right)\left( {{x_2} + 3} \right)}}\)
\[ = \frac{{x_2^2 + 3{x_2} + x_1^2 + 3{x_1}}}{{{x_1}{x_2} + 3{x_1} + 3{x_2} + 9}}\]
\[ = \frac{{x_2^2 + x_1^2 + 2{x_1}{x_2} - 2{x_1}{x_2} + 3\left( {{x_2} + {x_1}} \right)}}{{{x_1}{x_2} + 3\left( {{x_1} + {x_2}} \right) + 9}}\]
\[ = \frac{{{{\left( {{x_1} + {x_2}} \right)}^2} - 2{x_1}{x_2} + 3\left( {{x_2} + {x_1}} \right)}}{{{x_1}{x_2} + 3\left( {{x_1} + {x_2}} \right) + 9}}\]
Thay x1 + x2 = 3 và x1x2 = ‒ 40 vào biểu thức trên, ta được
\[C = \frac{{{3^2} - 2 \cdot \left( { - 40} \right) + 3 \cdot 3}}{{ - 40 + 3 \cdot 3 + 9}}\]
\[ = \frac{{9 + 80 + 9}}{{ - 40 + 9 + 9}} = \frac{{98}}{{ - 22}} = - \frac{{49}}{{11}}.\]
Lời giải
a) Phương trình 24x2 – 19x – 5 = 0 có:
a + b + c = 24 + (–19) + (–5) = 0.
Vậy phương trình có hai nghiệm là \({x_1} = 1;\,\,{x_2} = \frac{c}{a} = - \frac{5}{{24}}.\)
b) Phương trình 2,5x2 + 7,2x + 4,7 = 0 có:
a – b + c = 2,5 – 7,2 + 4,7 = 0.
Vậy phương trình có hai nghiệm là \({x_1} = - 1;\,\,{x_2} = - \frac{c}{a} = - \frac{{47}}{{25}}.\)
c) Phương trình \(\frac{3}{2}{x^2} + 5x + \frac{7}{2} = 0\) có:
\(a - b + c = \frac{3}{2} - 5 + \frac{7}{2} = \frac{3}{2} - \frac{{10}}{2} + \frac{7}{2} = \frac{0}{2} = 0.\)
Vậy phương trình có hai nghiệm là \({x_1} = - 1;\,\,{x_2} = - \frac{c}{a} = - \frac{{\frac{7}{2}}}{{\frac{3}{2}}} = - \frac{7}{3}.\)
d) Phương trình \(2{x^2} - \left( {2 + \sqrt 3 } \right)x + \sqrt 3 = 0\) có:
\(a + b + {\rm{c}} = 2 + \left[ { - \left( {2 + \sqrt 3 } \right)} \right] + \sqrt 3 = 2 - 2 - \sqrt 3 + \sqrt 3 = 0.\)
Vậy phương trình có hai nghiệm là \({x_1} = 1;\,\,{x_2} = \frac{c}{a} = \frac{{\sqrt 3 }}{2}.\)
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.