Câu hỏi:

28/08/2024 1,352

Tìm hai số a và b trong mỗi trường hợp sau:

a) a + b = 11 và a2 + b2 = 61;

b) ab = 24; a2 + b2 = 73 và a > b.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

a) Ta có (a + b)2 = a2 + 2ab + b2 hay (a + b)2 = (a2 + b2) + 2ab

Suy ra 112 = 61 + 2ab

121 = 61 + 2ab.

2ab = 60

ab = 30.

Với a + b = 11, ab = 30 ta có a, b là hai nghiệm của phương trình x2 11x + 30 = 0.

Ta có: ∆ = (‒11)2 ‒ 4.1.30 = 121 ‒ 120 = 1 > 0 nên phương trình có hai nghiệm phân biệt là:

\[{x_1} = \frac{{ - \left( { - 11} \right) + \sqrt 1 }}{{2 \cdot 1}} = \frac{{11 + 1}}{2} = \frac{{12}}{2} = 6;\]

\[{x_2} = \frac{{ - \left( { - 11} \right) - \sqrt 1 }}{{2 \cdot 1}} = \frac{{11 - 1}}{2} = \frac{{10}}{2} = 5.\]

Vậy a = 5; b = 6 hoặc a = 6; b = 5.

b) Ta có (a + b)2 = a2 + 2ab + b2 = (a2 + b2) + 2ab

                           = 73 + 2.24 = 73 + 48 = 121.

Suy ra a + b = 11 hoặc a + b = –11.

Với a + b = 11 và ab = 24, ta có a, b là nghiệm của phương trình x2 11x + 24 = 0.

Ta có: ∆ = (‒11)2 ‒ 4.1.24 = 121 ‒ 96 = 25 > 0 nên phương trình có hai nghiệm phân biệt là

\[{x_1} = \frac{{ - \left( { - 11} \right) + \sqrt {25} }}{{2 \cdot 1}} = \frac{{11 + 5}}{2} = \frac{{16}}{2} = 8;\]

\[{x_2} = \frac{{ - \left( { - 11} \right) - \sqrt {25} }}{{2 \cdot 1}} = \frac{{11 - 5}}{2} = \frac{6}{2} = 3.\]

Theo bài, a > b nên trong trường hợp này ta có a = 8; b = 3.

Với a + b = –11 và ab = 24, ta có a, b là nghiệm của phương trình x2 + 11x + 24 = 0.

Ta có: ∆ = 112 ‒ 4.1.24 = 121 ‒ 96 = 25 > 0 nên phương trình có hai nghiệm phân biệt là

\[{x_1} = \frac{{ - 11 + \sqrt {25} }}{{2 \cdot 1}} = \frac{{ - 11 + 5}}{2} = \frac{{ - 6}}{2} = - 3;\]

\[{x_2} = \frac{{ - 11 - \sqrt {25} }}{{2 \cdot 1}} = \frac{{ - 11 - 5}}{2} = \frac{{ - 16}}{2} = - 8.\]

Theo bài, a > b nên trong trường hợp này ta có a = ‒3; b = ‒8.

Vậy a = 8; b = 3 hoặc a = ‒3; b = ‒8.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Xét phương trình x2 – 3x – 40 = 0.

Ta có ∆ = (–3)2 – 4.1.(–40) = 9 + 160 = 169 > 0, nên phương trình đã cho có hai nghiệm phân biệt x1, x2.

Theo định lí Viète, ta có:

\(S = {x_1} + {x_2} = - \frac{b}{a} = - \frac{{ - 3}}{1} = 3;\,\,\,P = {x_1}{x_2} = \frac{c}{a} = \frac{{ - 40}}{1} = - 40.\)

a) \[A = x_1^2 + x_2^2 - x_1^2{x_2} - {x_1}x_2^2\]

\[ = x_1^2 + x_2^2 + 2{x_1}{x_2} - 2{x_1}{x_2} - {x_1}{x_2}\left( {{x_1} + {x_2}} \right)\]

\[ = {\left( {{x_1} + {x_2}} \right)^2} - 2{x_2}{x_2} - {x_1}{x_2}\left( {{x_1} + {x_2}} \right)\]

Thay x1 + x2 = 3 x1x2 = ‒ 40 vào biểu thức trên, ta được:

A = 32 ‒ 2.(‒40) ‒ (‒40).3

    = 9 + 80 + 120 = 209.

b) \[B = 3{x_1} + 3{x_2} - 2x_1^2 - 2x_2^2\]

\[ = 3\left( {{x_1} + {x_2}} \right) - 2\left( {x_1^2 + x_2^2} \right)\]

\[ = 3\left( {{x_1} + {x_2}} \right) - 2\left( {x_1^2 + x_2^2 + 2{x_1}{x_2} - 2{x_1}{x_2}} \right)\]

\[ = 3\left( {{x_1} + {x_2}} \right) - 2\left[ {{{\left( {{x_1} + {x_2}} \right)}^2} - 2{x_1}{x_2}} \right]\]

Thay x1 + x2 = 3 x1x2 = ‒ 40 vào biểu thức trên, ta được:

B = 3.3 ‒ 2[32 ‒ 2.(‒40)]

   = 9 ‒ 2(9 + 80) = 9 – 2.89

   = 9 ‒ 178 = ‒ 169.

c) \(C = \frac{{{x_2}}}{{{x_1} + 3}} + \frac{{{x_1}}}{{{x_2} + 3}} = \frac{{{x_2}\left( {{x_2} + 3} \right) + {x_1}\left( {{x_1} + 3} \right)}}{{\left( {{x_1} + 3} \right)\left( {{x_2} + 3} \right)}}\)

\[ = \frac{{x_2^2 + 3{x_2} + x_1^2 + 3{x_1}}}{{{x_1}{x_2} + 3{x_1} + 3{x_2} + 9}}\]

\[ = \frac{{x_2^2 + x_1^2 + 2{x_1}{x_2} - 2{x_1}{x_2} + 3\left( {{x_2} + {x_1}} \right)}}{{{x_1}{x_2} + 3\left( {{x_1} + {x_2}} \right) + 9}}\]

\[ = \frac{{{{\left( {{x_1} + {x_2}} \right)}^2} - 2{x_1}{x_2} + 3\left( {{x_2} + {x_1}} \right)}}{{{x_1}{x_2} + 3\left( {{x_1} + {x_2}} \right) + 9}}\]

Thay x1 + x2 = 3 x1x2 = ‒ 40 vào biểu thức trên, ta được

\[C = \frac{{{3^2} - 2 \cdot \left( { - 40} \right) + 3 \cdot 3}}{{ - 40 + 3 \cdot 3 + 9}}\]

   \[ = \frac{{9 + 80 + 9}}{{ - 40 + 9 + 9}} = \frac{{98}}{{ - 22}} = - \frac{{49}}{{11}}.\]

Lời giải

Nửa chu vi mảnh vườn hình chữ nhật là: 144 : 2 = 72 (m).

Mà nửa chu vi mảnh vườn hình chữ nhật đó chính là tổng chiều dài và chiều rộng của mảnh vườn và diện tích mảnh vườn chính là tích chiều dài và chiều rộng của mảnh vườn.

Tức là tổng chiều dài và chiều rộng bằng 72 (m) và tích chiều dài và chiều rộng bằng 1 040 m2.

Do đó chiều dài và chiều rộng là nghiệm của phương trình: x2 – 72x + 1 040 = 0.

Ta có: ∆ = (‒36)2 ‒ 1 . 1 040 = 1 296 ‒ 1 040 = 256 > 0 nên phương trình có hai nghiệm phân biệt là

\[{x_1} = \frac{{ - \left( { - 36} \right) + \sqrt {256} }}{1} = \frac{{36 + 16}}{1} = 52;\]

\[{x_2} = \frac{{ - \left( { - 36} \right) - \sqrt {256} }}{1} = \frac{{36 - 16}}{1} = 20.\]

Do chiều dài lớn hơn chiều rộng nên ta có a = 52 và b = 20.

Vậy chiều dài của mảnh vườn là 52 m, chiều rộng của mảnh vườn là 20 m.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP