Câu hỏi:
28/08/2024 84Cho phương trình x2 – 3x – 40 = 0. Gọi x1, x2 là hai nghiệm của phương trình, không giải phương trình, hãy tính giá trị của các biểu thức:
a) \[A = x_1^2 + x_2^2 - x_1^2{x_2} - {x_1}x_2^2;\]
b) \[B = 3{x_1} + 3{x_2} - 2x_1^2 - 2x_2^2;\]
c) \(C = \frac{{{x_2}}}{{{x_1} + 3}} + \frac{{{x_1}}}{{{x_2} + 3}}.\)
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Xét phương trình x2 – 3x – 40 = 0.
Ta có ∆ = (–3)2 – 4.1.(–40) = 9 + 160 = 169 > 0, nên phương trình đã cho có hai nghiệm phân biệt x1, x2.
Theo định lí Viète, ta có:
\(S = {x_1} + {x_2} = - \frac{b}{a} = - \frac{{ - 3}}{1} = 3;\,\,\,P = {x_1}{x_2} = \frac{c}{a} = \frac{{ - 40}}{1} = - 40.\)
a) \[A = x_1^2 + x_2^2 - x_1^2{x_2} - {x_1}x_2^2\]
\[ = x_1^2 + x_2^2 + 2{x_1}{x_2} - 2{x_1}{x_2} - {x_1}{x_2}\left( {{x_1} + {x_2}} \right)\]
\[ = {\left( {{x_1} + {x_2}} \right)^2} - 2{x_2}{x_2} - {x_1}{x_2}\left( {{x_1} + {x_2}} \right)\]
Thay x1 + x2 = 3 và x1x2 = ‒ 40 vào biểu thức trên, ta được:
A = 32 ‒ 2.(‒40) ‒ (‒40).3
= 9 + 80 + 120 = 209.
b) \[B = 3{x_1} + 3{x_2} - 2x_1^2 - 2x_2^2\]
\[ = 3\left( {{x_1} + {x_2}} \right) - 2\left( {x_1^2 + x_2^2} \right)\]
\[ = 3\left( {{x_1} + {x_2}} \right) - 2\left( {x_1^2 + x_2^2 + 2{x_1}{x_2} - 2{x_1}{x_2}} \right)\]
\[ = 3\left( {{x_1} + {x_2}} \right) - 2\left[ {{{\left( {{x_1} + {x_2}} \right)}^2} - 2{x_1}{x_2}} \right]\]
Thay x1 + x2 = 3 và x1x2 = ‒ 40 vào biểu thức trên, ta được:
B = 3.3 ‒ 2[32 ‒ 2.(‒40)]
= 9 ‒ 2(9 + 80) = 9 – 2.89
= 9 ‒ 178 = ‒ 169.
c) \(C = \frac{{{x_2}}}{{{x_1} + 3}} + \frac{{{x_1}}}{{{x_2} + 3}} = \frac{{{x_2}\left( {{x_2} + 3} \right) + {x_1}\left( {{x_1} + 3} \right)}}{{\left( {{x_1} + 3} \right)\left( {{x_2} + 3} \right)}}\)
\[ = \frac{{x_2^2 + 3{x_2} + x_1^2 + 3{x_1}}}{{{x_1}{x_2} + 3{x_1} + 3{x_2} + 9}}\]
\[ = \frac{{x_2^2 + x_1^2 + 2{x_1}{x_2} - 2{x_1}{x_2} + 3\left( {{x_2} + {x_1}} \right)}}{{{x_1}{x_2} + 3\left( {{x_1} + {x_2}} \right) + 9}}\]
\[ = \frac{{{{\left( {{x_1} + {x_2}} \right)}^2} - 2{x_1}{x_2} + 3\left( {{x_2} + {x_1}} \right)}}{{{x_1}{x_2} + 3\left( {{x_1} + {x_2}} \right) + 9}}\]
Thay x1 + x2 = 3 và x1x2 = ‒ 40 vào biểu thức trên, ta được
\[C = \frac{{{3^2} - 2 \cdot \left( { - 40} \right) + 3 \cdot 3}}{{ - 40 + 3 \cdot 3 + 9}}\]
\[ = \frac{{9 + 80 + 9}}{{ - 40 + 9 + 9}} = \frac{{98}}{{ - 22}} = - \frac{{49}}{{11}}.\]
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Một mảnh vườn hình chữ nhật có chu vi 144 m, diện tích 1 040 m2. Tính chiều dài và chiều rộng của mảnh vườn đó.
Câu 2:
Tính nhẩm nghiệm của các phương trình:
a) 24x2 – 19x – 5 = 0;
b) 2,5x2 + 7,2x + 4,7 = 0;
c) \(\frac{3}{2}{x^2} + 5x + \frac{7}{2} = 0;\)
d) \(2{x^2} - \left( {2 + \sqrt 3 } \right)x + \sqrt 3 = 0.\)
Câu 3:
Không giải phương trình, hãy tính tổng và tích các nghiệm (nếu có) của mỗi phương trình:
a) 5x2 – 9x + 1 = 0;
b) 9x2 – 12x + 4 = 0;
c) 4x2 + 9x + 12 = 0;
d) \[5{x^2} - 2\sqrt 3 x - 3 = 0.\]
Câu 4:
Tìm hai số a và b trong mỗi trường hợp sau:
a) a + b = 11 và a2 + b2 = 61;
b) ab = 24; a2 + b2 = 73 và a > b.
Câu 5:
Tìm hai số u và v (nếu có) trong mỗi trường hợp sau:
a) u + v = –20, uv = 96;
b) u + v = 24, uv = 135;
c) u + v = 9, uv = –400
d) u + v = 17, uv = 82.
về câu hỏi!