Câu hỏi:

28/08/2024 146

Cho phương trình x2 – 3x – 40 = 0. Gọi x1, x2 là hai nghiệm của phương trình, không giải phương trình, hãy tính giá trị của các biểu thức:

a) \[A = x_1^2 + x_2^2 - x_1^2{x_2} - {x_1}x_2^2;\]

b) \[B = 3{x_1} + 3{x_2} - 2x_1^2 - 2x_2^2;\]

c) \(C = \frac{{{x_2}}}{{{x_1} + 3}} + \frac{{{x_1}}}{{{x_2} + 3}}.\)

Sách mới 2k7: Bộ 20 đề minh họa Toán, Lí, Hóa, Văn, Sử, Địa…. form chuẩn 2025 của Bộ giáo dục (chỉ từ 110k).

20 đề Toán 20 đề Văn Các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Xét phương trình x2 – 3x – 40 = 0.

Ta có ∆ = (–3)2 – 4.1.(–40) = 9 + 160 = 169 > 0, nên phương trình đã cho có hai nghiệm phân biệt x1, x2.

Theo định lí Viète, ta có:

\(S = {x_1} + {x_2} = - \frac{b}{a} = - \frac{{ - 3}}{1} = 3;\,\,\,P = {x_1}{x_2} = \frac{c}{a} = \frac{{ - 40}}{1} = - 40.\)

a) \[A = x_1^2 + x_2^2 - x_1^2{x_2} - {x_1}x_2^2\]

\[ = x_1^2 + x_2^2 + 2{x_1}{x_2} - 2{x_1}{x_2} - {x_1}{x_2}\left( {{x_1} + {x_2}} \right)\]

\[ = {\left( {{x_1} + {x_2}} \right)^2} - 2{x_2}{x_2} - {x_1}{x_2}\left( {{x_1} + {x_2}} \right)\]

Thay x1 + x2 = 3 x1x2 = ‒ 40 vào biểu thức trên, ta được:

A = 32 ‒ 2.(‒40) ‒ (‒40).3

    = 9 + 80 + 120 = 209.

b) \[B = 3{x_1} + 3{x_2} - 2x_1^2 - 2x_2^2\]

\[ = 3\left( {{x_1} + {x_2}} \right) - 2\left( {x_1^2 + x_2^2} \right)\]

\[ = 3\left( {{x_1} + {x_2}} \right) - 2\left( {x_1^2 + x_2^2 + 2{x_1}{x_2} - 2{x_1}{x_2}} \right)\]

\[ = 3\left( {{x_1} + {x_2}} \right) - 2\left[ {{{\left( {{x_1} + {x_2}} \right)}^2} - 2{x_1}{x_2}} \right]\]

Thay x1 + x2 = 3 x1x2 = ‒ 40 vào biểu thức trên, ta được:

B = 3.3 ‒ 2[32 ‒ 2.(‒40)]

   = 9 ‒ 2(9 + 80) = 9 – 2.89

   = 9 ‒ 178 = ‒ 169.

c) \(C = \frac{{{x_2}}}{{{x_1} + 3}} + \frac{{{x_1}}}{{{x_2} + 3}} = \frac{{{x_2}\left( {{x_2} + 3} \right) + {x_1}\left( {{x_1} + 3} \right)}}{{\left( {{x_1} + 3} \right)\left( {{x_2} + 3} \right)}}\)

\[ = \frac{{x_2^2 + 3{x_2} + x_1^2 + 3{x_1}}}{{{x_1}{x_2} + 3{x_1} + 3{x_2} + 9}}\]

\[ = \frac{{x_2^2 + x_1^2 + 2{x_1}{x_2} - 2{x_1}{x_2} + 3\left( {{x_2} + {x_1}} \right)}}{{{x_1}{x_2} + 3\left( {{x_1} + {x_2}} \right) + 9}}\]

\[ = \frac{{{{\left( {{x_1} + {x_2}} \right)}^2} - 2{x_1}{x_2} + 3\left( {{x_2} + {x_1}} \right)}}{{{x_1}{x_2} + 3\left( {{x_1} + {x_2}} \right) + 9}}\]

Thay x1 + x2 = 3 x1x2 = ‒ 40 vào biểu thức trên, ta được

\[C = \frac{{{3^2} - 2 \cdot \left( { - 40} \right) + 3 \cdot 3}}{{ - 40 + 3 \cdot 3 + 9}}\]

   \[ = \frac{{9 + 80 + 9}}{{ - 40 + 9 + 9}} = \frac{{98}}{{ - 22}} = - \frac{{49}}{{11}}.\]

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Một mảnh vườn hình chữ nhật có chu vi 144 m, diện tích 1 040 m2. Tính chiều dài và chiều rộng của mảnh vườn đó.

Xem đáp án » 28/08/2024 221

Câu 2:

Tính nhẩm nghiệm của các phương trình:

a) 24x2 – 19x – 5 = 0;

b) 2,5x2 + 7,2x + 4,7 = 0;

c) \(\frac{3}{2}{x^2} + 5x + \frac{7}{2} = 0;\)

d) \(2{x^2} - \left( {2 + \sqrt 3 } \right)x + \sqrt 3 = 0.\)

Xem đáp án » 28/08/2024 197

Câu 3:

Tìm hai số a và b trong mỗi trường hợp sau:

a) a + b = 11 và a2 + b2 = 61;

b) ab = 24; a2 + b2 = 73 và a > b.

Xem đáp án » 28/08/2024 159

Câu 4:

Không giải phương trình, hãy tính tổng và tích các nghiệm (nếu có) của mỗi phương trình:

a) 5x2 – 9x + 1 = 0;

b) 9x2 – 12x + 4 = 0;

c) 4x2 + 9x + 12 = 0;

d) \[5{x^2} - 2\sqrt 3 x - 3 = 0.\]

Xem đáp án » 28/08/2024 113

Câu 5:

Tìm hai số u và v (nếu có) trong mỗi trường hợp sau:

a) u + v = –20, uv = 96;

b) u + v = 24, uv = 135;

c) u + v = 9, uv = –400

d) u + v = 17, uv = 82.

Xem đáp án » 28/08/2024 72

Bình luận


Bình luận