Câu hỏi:

29/08/2024 216

Cho biểu thức \(P = \frac{{\sqrt x  + 1}}{{\sqrt x  - 1}} + \frac{{2\sqrt x  + 1}}{{x - \sqrt x }} + \frac{1}{{\sqrt x }}\) với \(x > 0,x \ne 1.\)

1) Rút gọn biểu thức \(P.\)

2) Tìm tất cả các giá trị của \(x\) để \(P < 0.\)

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

1) Với \(x > 0,\,\,x \ne 1\) ta có:

\(P = \frac{{\sqrt x  + 1}}{{\sqrt x  - 1}} + \frac{{2\sqrt x  + 1}}{{x - \sqrt x }} + \frac{1}{{\sqrt x }}\)

\( = \frac{{\left( {\sqrt x  + 1} \right)\sqrt x }}{{\left( {\sqrt x  - 1} \right)\sqrt x }} + \frac{{2\sqrt x  + 1}}{{\sqrt x \left( {\sqrt x  - 1} \right)}} + \frac{{\sqrt x  - 1}}{{\sqrt x \left( {\sqrt x  - 1} \right)}}\)

\( = \frac{{x + \sqrt x  + 2\sqrt x  + 1 + \sqrt x  - 1}}{{\left( {\sqrt x  - 1} \right)\sqrt x }}\)\( = \frac{{x + 4\sqrt x }}{{\sqrt x \left( {\sqrt x  - 1} \right)}}\)

\( = \frac{{\sqrt x \left( {\sqrt x  + 4} \right)}}{{\sqrt x \left( {\sqrt x  - 1} \right)}} = \frac{{\sqrt x  + 4}}{{\sqrt x  - 1}}.\)

Vậy với \(x > 0,\,\,x \ne 1\) thì \(P = \frac{{\sqrt x  + 4}}{{\sqrt x  - 1}}.\)

2) Với \(x > 0,\,\,x \ne 1\) ta có: \(P < 0\) tức là \(\frac{{\sqrt x  + 4}}{{\sqrt x  - 1}} < 0\) suy ra \(\sqrt x  - 1 < 0\) (vì \(\sqrt x  + 4 > 0)\)

Do đó \(\sqrt x  < 1\) hay \(x < 1.\)

Kết hợp với điều kiện \(x > 0,\,\,x \ne 1\) ta có \(0 < x < 1.\)

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Cho tam giác ABC cân tại A Gọi O là trung điểm của cạnh BC Đường tròn O tiếp xúc với AB tại E tiếp xúc với AC tại  (ảnh 1)

Do đó \(\widehat {IOK} = \widehat {IOH} + \widehat {HOK} = \frac{1}{2}\left( {\widehat {EOH} + \widehat {HOF}} \right) = \frac{1}{2}\widehat {EOF}.\,\,\,\left( 1 \right)\)

Do \[AEOF\] là tứ giác nội tiếp nên \(\widehat {EAF} + \widehat {EOF} = 180^\circ ,\) suy ra \(\widehat {EAF} = 180^\circ  - \widehat {EOF}.\)

Mặt khác, \(\Delta ABC\) cân tại \(A\) nên \(\widehat {ACB} = \frac{{180^\circ  - \widehat {BAC}}}{2} = \frac{{180^\circ  - \left( {180^\circ  - \widehat {EOF}} \right)}}{2} = \frac{1}{2}\widehat {EOF}.\,\,\left( 2 \right)\)

Từ \(\left( 1 \right)\) và \(\left( 2 \right)\) suy ra \[\widehat {ACB} = \widehat {IOK}.\]

Ta có: \(\widehat {IOK} + \widehat {IOB} + \widehat {KOC} = 180^\circ ;\)

 \(\widehat {ACB} + \widehat {CKO} + \widehat {KOC} = 180^\circ \)

Suy ra \[\widehat {IOB} = \widehat {CKO}.\] Kết hợp \(\widehat {OBI} = \widehat {OCK}\) ta chứng minh được  (g.g).

3) Vì \(O\) là trung điểm của \(BC\) nên \(OB = OC = \frac{{BC}}{2} = \frac{6}{2} = 3{\rm{\;(cm)}}{\rm{.}}\)

Vì \(\Delta ABC\) cân tại \(A\) nên đường trung tuyến \(AO\) đồng thời là đường cao và đường phân giác của tam giác.

Xét \(\Delta ABO\) vuông tại \(O,\) ta có \(A{B^2} = A{O^2} + B{O^2}\) (định lí Pythagore)

Suy ra \(AO = \sqrt {A{B^2} - O{B^2}}  = \sqrt {{5^2} - {3^2}}  = \sqrt {16}  = 4{\rm{\;(cm)}}{\rm{.}}\)

Xét \(\Delta OBE\) và \(\Delta ABO\) có: \(\widehat {ABO}\) là góc chung và \(\widehat {BEO} = \widehat {BOA} = 90^\circ .\)

Do đó  (g.g), suy ra \(\frac{{OB}}{{AB}} = \frac{{BE}}{{BO}} = \frac{{OE}}{{AO}}\)

Nên \(O{B^2} = AB \cdot BE\) và \(OE \cdot AB = OB \cdot OA.\)

Từ đó, ta có \(BE = \frac{{O{B^2}}}{{AB}} = \frac{{{3^2}}}{5} = 1,8{\rm{\;(cm)}}\) và \(OE = \frac{{OB \cdot OA}}{{AB}} = \frac{{3 \cdot 4}}{5} = 2,4{\rm{\;(cm)}}{\rm{.}}\)

Theo câu 2,  suy ra \(\frac{{OB}}{{KC}} = \frac{{BI}}{{CO}}\) hay \(KC \cdot BI = OB \cdot OC = O{B^2}.\)

Ta có: \({S_{AIK}} = {S_{ABC}} - {S_{BIKC}}\) nên \({S_{AIK}}\) lớn nhất khi \({S_{BIKC}}\) nhỏ nhất.

Gọi \(R\) là bán kính đường tròn \(\left( O \right).\) Khi đó \(R = OE = 2,4{\rm{\;cm}}.\)

Ta có: \({S_{BIKC}} = {S_{BOI}} + {S_{IOK}} + {S_{KOC}} = \frac{1}{2}\left( {OE \cdot BI + OH \cdot IK + OF \cdot KC} \right)\)

 \( = \frac{1}{2}R \cdot \left( {BI + IK + KC} \right)\)\( = \frac{1}{2}R\left( {BI + IH + HK + KC} \right)\)

 \( = \frac{1}{2}R\left( {BI + CK + IE + KF} \right)\)\( = \frac{1}{2}R\left( {2BI + 2CK - BE - CF} \right)\)

 \( = \frac{1}{2}R\left( {2BI + 2CK - 2BE} \right)\)\( = R\left( {BI + CK - BE} \right)\)

 \( \le R \cdot \left( {2\sqrt {BI \cdot CK}  - BE} \right) = R \cdot \left( {2\sqrt {O{B^2}}  - BE} \right) = R \cdot \left( {2OB - BE} \right)\)

\( = 2,4 \cdot \left( {2 \cdot 3 - 1,8} \right) = 10,08{\rm{\;(c}}{{\rm{m}}^2}{\rm{)}}{\rm{.}}\)

Lại có \({S_{ABC}} = \frac{1}{2}AO \cdot BC = \frac{1}{2} \cdot 4 \cdot 6 = 12{\rm{\;(c}}{{\rm{m}}^2}{\rm{)}}{\rm{.}}\)

Do đó \({S_{AIK}} \le 12 - 10,08 = 1,92{\rm{\;(c}}{{\rm{m}}^2}{\rm{)}}{\rm{.}}\)

Dấu “=” xảy ra khi \[BI = CK\] hay \[AI = AK,\] tức là \(\Delta AIK\) cân tại \(A\) nên đường phân giác \(AO\) của tam giác này đồng thời là đường cao, tức \(AO \bot IK,\) mà \(OH \bot IK\) nên \(OH\) trùng \(OA,\) hay \(H\) là điểm chính giữa cung \[EF.\]

Vậy giá trị lớn nhất của diện tích tam giác \[AIK\] bằng \(1,92\) cm2 khi \(H\) là điểm chính giữa cung \[EF.\]

 

Lời giải

1) Để \[\left( d \right)\,{\rm{//}}\,\left( {d'} \right)\] thì \(\left\{ \begin{array}{l}{m^2} - 3 = 6\\m \ne 3\end{array} \right.\) hay\(\left\{ \begin{array}{l}{m^2} = 9\\m \ne 3\end{array} \right.\) suy ra \(m =  - 3.\)

Vậy với \(m =  - 3\) thì hai đường thẳng đã cho song song với nhau.

2) Giải hệ phương trình \(\left\{ \begin{array}{l}x + 5y =  - 7\\x - 4y = 11.\end{array} \right.\)

Trừ từng vế hai phương trình thứ nhất và thứ hai của hệ phương trình, ta được:

\(9y =  - 18,\) suy ra \(y =  - 2.\)

Thay \(y =  - 2\) vào phương trình \(x + 5y =  - 7,\) ta được:

\(x + 5 \cdot \left( { - 2} \right) =  - 7,\) suy ra \(x = 3.\)

Vậy hệ phương trình có nghiệm duy nhất là \[\left( {x;{\rm{ }}y} \right) = \left( {3;\,\, - 2} \right).\]

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay