Câu hỏi:

29/08/2024 5,804

Cho tam giác \[ABC\] cân tại \[A.\] Gọi \[O\] là trung điểm của cạnh \[BC.\] Đường tròn \[\left( O \right)\] tiếp xúc với \[AB\] tại \[E,\] tiếp xúc với \[AC\] tại \[F.\] Điểm \[H\] di động trên cung nhỏ  của đường tròn \[\left( O \right);\] tiếp tuyến của đường tròn \[\left( O \right)\] tại \[H\] cắt \[AB,{\rm{ }}AC\] lần lượt tại \[I,{\rm{ }}K.\]

1) Chứng minh \[AEOF\] là tứ giác nội tiếp.

2) Chứng minh \(\widehat {IOK} = \widehat {ABC}\) và hai tam giác \[OIB,\,\,KOC\] đồng dạng.

3) Giả sử \[AB = 5\] cm, \[BC = 6\] cm. Tìm giá trị lớn nhất của diện tích tam giác \[AIK.\]

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack
Cho tam giác ABC cân tại A Gọi O là trung điểm của cạnh BC Đường tròn O tiếp xúc với AB tại E tiếp xúc với AC tại  (ảnh 1)

Do đó \(\widehat {IOK} = \widehat {IOH} + \widehat {HOK} = \frac{1}{2}\left( {\widehat {EOH} + \widehat {HOF}} \right) = \frac{1}{2}\widehat {EOF}.\,\,\,\left( 1 \right)\)

Do \[AEOF\] là tứ giác nội tiếp nên \(\widehat {EAF} + \widehat {EOF} = 180^\circ ,\) suy ra \(\widehat {EAF} = 180^\circ  - \widehat {EOF}.\)

Mặt khác, \(\Delta ABC\) cân tại \(A\) nên \(\widehat {ACB} = \frac{{180^\circ  - \widehat {BAC}}}{2} = \frac{{180^\circ  - \left( {180^\circ  - \widehat {EOF}} \right)}}{2} = \frac{1}{2}\widehat {EOF}.\,\,\left( 2 \right)\)

Từ \(\left( 1 \right)\) và \(\left( 2 \right)\) suy ra \[\widehat {ACB} = \widehat {IOK}.\]

Ta có: \(\widehat {IOK} + \widehat {IOB} + \widehat {KOC} = 180^\circ ;\)

 \(\widehat {ACB} + \widehat {CKO} + \widehat {KOC} = 180^\circ \)

Suy ra \[\widehat {IOB} = \widehat {CKO}.\] Kết hợp \(\widehat {OBI} = \widehat {OCK}\) ta chứng minh được  (g.g).

3) Vì \(O\) là trung điểm của \(BC\) nên \(OB = OC = \frac{{BC}}{2} = \frac{6}{2} = 3{\rm{\;(cm)}}{\rm{.}}\)

Vì \(\Delta ABC\) cân tại \(A\) nên đường trung tuyến \(AO\) đồng thời là đường cao và đường phân giác của tam giác.

Xét \(\Delta ABO\) vuông tại \(O,\) ta có \(A{B^2} = A{O^2} + B{O^2}\) (định lí Pythagore)

Suy ra \(AO = \sqrt {A{B^2} - O{B^2}}  = \sqrt {{5^2} - {3^2}}  = \sqrt {16}  = 4{\rm{\;(cm)}}{\rm{.}}\)

Xét \(\Delta OBE\) và \(\Delta ABO\) có: \(\widehat {ABO}\) là góc chung và \(\widehat {BEO} = \widehat {BOA} = 90^\circ .\)

Do đó  (g.g), suy ra \(\frac{{OB}}{{AB}} = \frac{{BE}}{{BO}} = \frac{{OE}}{{AO}}\)

Nên \(O{B^2} = AB \cdot BE\) và \(OE \cdot AB = OB \cdot OA.\)

Từ đó, ta có \(BE = \frac{{O{B^2}}}{{AB}} = \frac{{{3^2}}}{5} = 1,8{\rm{\;(cm)}}\) và \(OE = \frac{{OB \cdot OA}}{{AB}} = \frac{{3 \cdot 4}}{5} = 2,4{\rm{\;(cm)}}{\rm{.}}\)

Theo câu 2,  suy ra \(\frac{{OB}}{{KC}} = \frac{{BI}}{{CO}}\) hay \(KC \cdot BI = OB \cdot OC = O{B^2}.\)

Ta có: \({S_{AIK}} = {S_{ABC}} - {S_{BIKC}}\) nên \({S_{AIK}}\) lớn nhất khi \({S_{BIKC}}\) nhỏ nhất.

Gọi \(R\) là bán kính đường tròn \(\left( O \right).\) Khi đó \(R = OE = 2,4{\rm{\;cm}}.\)

Ta có: \({S_{BIKC}} = {S_{BOI}} + {S_{IOK}} + {S_{KOC}} = \frac{1}{2}\left( {OE \cdot BI + OH \cdot IK + OF \cdot KC} \right)\)

 \( = \frac{1}{2}R \cdot \left( {BI + IK + KC} \right)\)\( = \frac{1}{2}R\left( {BI + IH + HK + KC} \right)\)

 \( = \frac{1}{2}R\left( {BI + CK + IE + KF} \right)\)\( = \frac{1}{2}R\left( {2BI + 2CK - BE - CF} \right)\)

 \( = \frac{1}{2}R\left( {2BI + 2CK - 2BE} \right)\)\( = R\left( {BI + CK - BE} \right)\)

 \( \le R \cdot \left( {2\sqrt {BI \cdot CK}  - BE} \right) = R \cdot \left( {2\sqrt {O{B^2}}  - BE} \right) = R \cdot \left( {2OB - BE} \right)\)

\( = 2,4 \cdot \left( {2 \cdot 3 - 1,8} \right) = 10,08{\rm{\;(c}}{{\rm{m}}^2}{\rm{)}}{\rm{.}}\)

Lại có \({S_{ABC}} = \frac{1}{2}AO \cdot BC = \frac{1}{2} \cdot 4 \cdot 6 = 12{\rm{\;(c}}{{\rm{m}}^2}{\rm{)}}{\rm{.}}\)

Do đó \({S_{AIK}} \le 12 - 10,08 = 1,92{\rm{\;(c}}{{\rm{m}}^2}{\rm{)}}{\rm{.}}\)

Dấu “=” xảy ra khi \[BI = CK\] hay \[AI = AK,\] tức là \(\Delta AIK\) cân tại \(A\) nên đường phân giác \(AO\) của tam giác này đồng thời là đường cao, tức \(AO \bot IK,\) mà \(OH \bot IK\) nên \(OH\) trùng \(OA,\) hay \(H\) là điểm chính giữa cung \[EF.\]

Vậy giá trị lớn nhất của diện tích tam giác \[AIK\] bằng \(1,92\) cm2 khi \(H\) là điểm chính giữa cung \[EF.\]

 

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

1) Trong mặt phẳng tọa độ \[Oxy,\] cho hai đường thẳng \(\left( d \right):y = \left( {{m^2} - 3} \right)x + 3\) và \(\left( {d'} \right):y = 6x + m.\) Tìm tất cả các giá trị của \[m\] để hai đường thẳng trên song song với nhau.

2) Giải hệ phương trình \(\left\{ \begin{array}{l}x + 5y =  - 7\\x - 4y = 11.\end{array} \right.\)

Xem đáp án » 29/08/2024 1,223

Câu 2:

Cho các số thực dương \[a,{\rm{ }}b,{\rm{ }}c\] thỏa mãn \[abc = 1.\] Tìm giá trị nhỏ nhất của biểu thức

\(P = \frac{{{a^4}\left( {{b^2} + {c^2}} \right)}}{{{b^3} + 2{c^3}}} + \frac{{{b^4}\left( {{c^2} + {a^2}} \right)}}{{{c^3} + 2{a^3}}} + \frac{{{c^4}\left( {{a^2} + {b^2}} \right)}}{{{a^3} + 2{b^3}}}.\)

Xem đáp án » 29/08/2024 1,193

Câu 3:

1) Giải phương trình \({x^2} + 6x + 5 = 0.\)

2) Cho phương trình \({x^2} - x + 4m + 2 = 0\) \[(m\] là tham số). Tìm các giá trị của \[m\] để phương trình có hai nghiệm phân biệt \({x_1},\,\,{x_2}\) thỏa mãn hệ thức \({x_1}^2 - 4{x_1}{x_2} + 3{x_2}^2 = 5\left( {{x_1} - {x_2}} \right).\)
 

Xem đáp án » 29/08/2024 706

Câu 4:

Cho biểu thức \(P = \frac{{\sqrt x  + 1}}{{\sqrt x  - 1}} + \frac{{2\sqrt x  + 1}}{{x - \sqrt x }} + \frac{1}{{\sqrt x }}\) với \(x > 0,x \ne 1.\)

1) Rút gọn biểu thức \(P.\)

2) Tìm tất cả các giá trị của \(x\) để \(P < 0.\)

Xem đáp án » 29/08/2024 204
Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay