Câu hỏi:
29/08/2024 172Cho tam giác \[ABC\] cân tại \[A.\] Gọi \[O\] là trung điểm của cạnh \[BC.\] Đường tròn \[\left( O \right)\] tiếp xúc với \[AB\] tại \[E,\] tiếp xúc với \[AC\] tại \[F.\] Điểm \[H\] di động trên cung nhỏ của đường tròn \[\left( O \right);\] tiếp tuyến của đường tròn \[\left( O \right)\] tại \[H\] cắt \[AB,{\rm{ }}AC\] lần lượt tại \[I,{\rm{ }}K.\]
1) Chứng minh \[AEOF\] là tứ giác nội tiếp.
2) Chứng minh \(\widehat {IOK} = \widehat {ABC}\) và hai tam giác \[OIB,\,\,KOC\] đồng dạng.
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Do đó \(\widehat {IOK} = \widehat {IOH} + \widehat {HOK} = \frac{1}{2}\left( {\widehat {EOH} + \widehat {HOF}} \right) = \frac{1}{2}\widehat {EOF}.\,\,\,\left( 1 \right)\)
Do \[AEOF\] là tứ giác nội tiếp nên \(\widehat {EAF} + \widehat {EOF} = 180^\circ ,\) suy ra \(\widehat {EAF} = 180^\circ - \widehat {EOF}.\)
Mặt khác, \(\Delta ABC\) cân tại \(A\) nên \(\widehat {ACB} = \frac{{180^\circ - \widehat {BAC}}}{2} = \frac{{180^\circ - \left( {180^\circ - \widehat {EOF}} \right)}}{2} = \frac{1}{2}\widehat {EOF}.\,\,\left( 2 \right)\)
Từ \(\left( 1 \right)\) và \(\left( 2 \right)\) suy ra \[\widehat {ACB} = \widehat {IOK}.\]
Ta có: \(\widehat {IOK} + \widehat {IOB} + \widehat {KOC} = 180^\circ ;\)
\(\widehat {ACB} + \widehat {CKO} + \widehat {KOC} = 180^\circ \)
Suy ra \[\widehat {IOB} = \widehat {CKO}.\] Kết hợp \(\widehat {OBI} = \widehat {OCK}\) ta chứng minh được (g.g).
3) Vì \(O\) là trung điểm của \(BC\) nên \(OB = OC = \frac{{BC}}{2} = \frac{6}{2} = 3{\rm{\;(cm)}}{\rm{.}}\)
Vì \(\Delta ABC\) cân tại \(A\) nên đường trung tuyến \(AO\) đồng thời là đường cao và đường phân giác của tam giác.
Xét \(\Delta ABO\) vuông tại \(O,\) ta có \(A{B^2} = A{O^2} + B{O^2}\) (định lí Pythagore)
Suy ra \(AO = \sqrt {A{B^2} - O{B^2}} = \sqrt {{5^2} - {3^2}} = \sqrt {16} = 4{\rm{\;(cm)}}{\rm{.}}\)
Xét \(\Delta OBE\) và \(\Delta ABO\) có: \(\widehat {ABO}\) là góc chung và \(\widehat {BEO} = \widehat {BOA} = 90^\circ .\)
Do đó (g.g), suy ra \(\frac{{OB}}{{AB}} = \frac{{BE}}{{BO}} = \frac{{OE}}{{AO}}\)
Nên \(O{B^2} = AB \cdot BE\) và \(OE \cdot AB = OB \cdot OA.\)
Từ đó, ta có \(BE = \frac{{O{B^2}}}{{AB}} = \frac{{{3^2}}}{5} = 1,8{\rm{\;(cm)}}\) và \(OE = \frac{{OB \cdot OA}}{{AB}} = \frac{{3 \cdot 4}}{5} = 2,4{\rm{\;(cm)}}{\rm{.}}\)
Theo câu 2, suy ra \(\frac{{OB}}{{KC}} = \frac{{BI}}{{CO}}\) hay \(KC \cdot BI = OB \cdot OC = O{B^2}.\)
Ta có: \({S_{AIK}} = {S_{ABC}} - {S_{BIKC}}\) nên \({S_{AIK}}\) lớn nhất khi \({S_{BIKC}}\) nhỏ nhất.
Gọi \(R\) là bán kính đường tròn \(\left( O \right).\) Khi đó \(R = OE = 2,4{\rm{\;cm}}.\)
Ta có: \({S_{BIKC}} = {S_{BOI}} + {S_{IOK}} + {S_{KOC}} = \frac{1}{2}\left( {OE \cdot BI + OH \cdot IK + OF \cdot KC} \right)\)
\( = \frac{1}{2}R \cdot \left( {BI + IK + KC} \right)\)\( = \frac{1}{2}R\left( {BI + IH + HK + KC} \right)\)
\( = \frac{1}{2}R\left( {BI + CK + IE + KF} \right)\)\( = \frac{1}{2}R\left( {2BI + 2CK - BE - CF} \right)\)
\( = \frac{1}{2}R\left( {2BI + 2CK - 2BE} \right)\)\( = R\left( {BI + CK - BE} \right)\)
\( \le R \cdot \left( {2\sqrt {BI \cdot CK} - BE} \right) = R \cdot \left( {2\sqrt {O{B^2}} - BE} \right) = R \cdot \left( {2OB - BE} \right)\)
\( = 2,4 \cdot \left( {2 \cdot 3 - 1,8} \right) = 10,08{\rm{\;(c}}{{\rm{m}}^2}{\rm{)}}{\rm{.}}\)
Lại có \({S_{ABC}} = \frac{1}{2}AO \cdot BC = \frac{1}{2} \cdot 4 \cdot 6 = 12{\rm{\;(c}}{{\rm{m}}^2}{\rm{)}}{\rm{.}}\)
Do đó \({S_{AIK}} \le 12 - 10,08 = 1,92{\rm{\;(c}}{{\rm{m}}^2}{\rm{)}}{\rm{.}}\)
Dấu “=” xảy ra khi \[BI = CK\] hay \[AI = AK,\] tức là \(\Delta AIK\) cân tại \(A\) nên đường phân giác \(AO\) của tam giác này đồng thời là đường cao, tức \(AO \bot IK,\) mà \(OH \bot IK\) nên \(OH\) trùng \(OA,\) hay \(H\) là điểm chính giữa cung \[EF.\]
Vậy giá trị lớn nhất của diện tích tam giác \[AIK\] bằng \(1,92\) cm2 khi \(H\) là điểm chính giữa cung \[EF.\]
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho các số thực dương \[a,{\rm{ }}b,{\rm{ }}c\] thỏa mãn \[abc = 1.\] Tìm giá trị nhỏ nhất của biểu thức
\(P = \frac{{{a^4}\left( {{b^2} + {c^2}} \right)}}{{{b^3} + 2{c^3}}} + \frac{{{b^4}\left( {{c^2} + {a^2}} \right)}}{{{c^3} + 2{a^3}}} + \frac{{{c^4}\left( {{a^2} + {b^2}} \right)}}{{{a^3} + 2{b^3}}}.\)
Câu 2:
1) Trong mặt phẳng tọa độ \[Oxy,\] cho hai đường thẳng \(\left( d \right):y = \left( {{m^2} - 3} \right)x + 3\) và \(\left( {d'} \right):y = 6x + m.\) Tìm tất cả các giá trị của \[m\] để hai đường thẳng trên song song với nhau.
Câu 3:
1) Giải phương trình \({x^2} + 6x + 5 = 0.\)
Câu 4:
Cho biểu thức \(P = \frac{{\sqrt x + 1}}{{\sqrt x - 1}} + \frac{{2\sqrt x + 1}}{{x - \sqrt x }} + \frac{1}{{\sqrt x }}\) với \(x > 0,x \ne 1.\)
1) Rút gọn biểu thức \(P.\)
về câu hỏi!