Câu hỏi:
13/09/2024 214Cho tam giác ABC vuông cân tại C và nội tiếp đường tròn (O; R). E là điểm tùy ý trên cung nhỏ AC của đường tròn đó. Gọi F là giao điểm của EB và CO, I là tâm đường tròn ngoại tiếp tam giác ECF. Chứng minh rằng khi E di chuyển trên cung nhỏ AC thì I luôn di chuyển trên một đoạn thẳng cố định.
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
⦁ Vì ∆ABC vuông cân tại C nên .
Ta có (hai góc nội tiếp cùng chắn cung CB của đường tròn (O)).
Mặt khác, I là tâm đường tròn ngoại tiếp tam giác ECF, do đó lần lượt là góc ở tâm và góc nội tiếp chắn cung CF của đường tròn (I), suy ra .
Mà IC = IF suy ra tam giác ICF vuông cân tại I, do đó (1)
⦁ Vì ∆ABC vuông cân tại C nên do đó AB là đường kính của đường tròn (O; R), khi đó CO là đường trung tuyến đồng thời là đường phân giác của tam giác.
Suy ra . (2)
Từ (1) và (2) suy ra điểm I nằm trên AC.
Vậy khi E di chuyển trên cung nhỏ AC thì I di chuyển trên đoạn thẳng AC cố định.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 2:
Cho hai đường tròn (O) và (O’) cắt nhau tại hai điểm phân biệt A, B. Đường thẳng AO cắt (O) và (O’) lần lượt tại hai điểm C, E (khác điểm A). Đường thẳng AO’ cắt (O) và (O’) lần lượt tại hai điểm D, F (khác điểm A). Chứng minh:
a) C, B, F thẳng hàng;
b) Bốn điểm C, D, E, F cùng nằm trên một đường tròn;
c) A là tâm đường tròn nội tiếp tam giác BDE.
Câu 4:
Cho tam giác ABC cân tại A, có O, I lần lượt là tâm các đường tròn ngoại tiếp và đường tròn nội tiếp tam giác ABC.
a) Chứng minh rằng:
– Ba điểm A, O, I cùng thuộc một đường thẳng;
– Đường thẳng OA vuông góc với BC và đi qua điểm chính giữa D (khác điểm A) của cung BC.
b) Cho BC = 24 cm, AC = 20 cm. Tính độ dài bán kính R của đường tròn ngoại tiếp và bán kính r của đường tròn nội tiếp tam giác ABC.
Câu 5:
Tìm phát biểu đúng trong các phát biểu sau:
a) Tâm đường tròn ngoại tiếp tam giác là giao điểm ba đường phân giác của tam giác đó.
b) Tâm đường tròn nội tiếp tam giác là giao điểm của ba đường trung trực của tam giác đó.
c) Đường tròn ngoại tiếp tam giác vuông có tâm là trung điểm của cạnh huyền.
Câu 6:
Cho tam giác đều ABC nội tiếp đường tròn tâm O, bán kính R.
a) Chứng minh rằng O cũng là tâm đường tròn nội tiếp tam giác ABC.
b) Vẽ tam giác IJK ngoại tiếp đường tròn (O; R) với JK // BC, IJ // AC, IK // AB. Chứng minh tam giác IJK đều.
c) Gọi R’ là bán kính của đường tròn ngoại tiếp tam giác IJK và r là bán kính của đường tròn nội tiếp tam giác ABC. Tính
về câu hỏi!