Câu hỏi:

13/09/2024 307

Cho tam giác ABC vuông cân tại C và nội tiếp đường tròn (O; R). E là điểm tùy ý trên cung nhỏ AC của đường tròn đó. Gọi F là giao điểm của EB và CO, I là tâm đường tròn ngoại tiếp tam giác ECF. Chứng minh rằng khi E di chuyển trên cung nhỏ AC thì I luôn di chuyển trên một đoạn thẳng cố định.

Sách mới 2k7: Bộ 20 đề minh họa Toán, Lí, Hóa, Văn, Sử, Địa…. form chuẩn 2025 của Bộ giáo dục (chỉ từ 110k).

20 đề Toán 20 đề Văn Các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack
Cho tam giác ABC vuông cân tại C và nội tiếp đường tròn (O; R). E là điểm tùy ý trên cung nhỏ AC của đường (ảnh 1)

Vì ∆ABC vuông cân tại C nên CAB^=45°.

Ta có CEB^=CAB^=45° (hai góc nội tiếp cùng chắn cung CB của đường tròn (O)).

Mặt khác, I là tâm đường tròn ngoại tiếp tam giác ECF, do đó CIF^, CEF^ lần lượt là góc ở tâm và góc nội tiếp chắn cung CF của đường tròn (I), suy ra CIF^=2·CEF^=2·45°=90°.

Mà IC = IF suy ra tam giác ICF vuông cân tại I, do đó ICF^=45° (1)

Vì ∆ABC vuông cân tại C nên ACB^=90° do đó AB là đường kính của đường tròn (O; R), khi đó CO là đường trung tuyến đồng thời là đường phân giác của tam giác.

Suy ra  ACO^=12ACB^=12·90°=45°. (2)

Từ (1) và (2) suy ra điểm I nằm trên AC.

Vậy khi E di chuyển trên cung nhỏ AC thì I di chuyển trên đoạn thẳng AC cố định.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho tam giác ABC vuông tại A có AB = 6, AC = 8, bán kính đường tròn nội tiếp là r, bán kính đường tròn ngoại tiếp là R. Tính rR

Xem đáp án » 13/09/2024 2,327

Câu 2:

Cho hai đường tròn (O) và (O’) cắt nhau tại hai điểm phân biệt A, B. Đường thẳng AO cắt (O) và (O’) lần lượt tại hai điểm C, E (khác điểm A). Đường thẳng AO’  cắt (O) và (O’) lần lượt tại hai điểm D, F (khác điểm A). Chứng minh:

a) C, B, F thẳng hàng;

b) Bốn điểm C, D, E, F cùng nằm trên một đường tròn;

c) A là tâm đường tròn nội tiếp tam giác BDE.

Xem đáp án » 13/09/2024 1,766

Câu 3:

Cho tam giác ABC cân tại A, có O, I lần lượt là tâm các đường tròn ngoại tiếp và đường tròn nội tiếp tam giác ABC.

a) Chứng minh rằng:

– Ba điểm A, O, I cùng thuộc một đường thẳng;

– Đường thẳng OA vuông góc với BC và đi qua điểm chính giữa D (khác điểm A) của cung BC.

b) Cho BC = 24 cm, AC = 20 cm. Tính độ dài bán kính R của đường tròn ngoại tiếp và bán kính r của đường tròn nội tiếp tam giác ABC.

Xem đáp án » 13/09/2024 711

Câu 4:

Trên đường tròn (O) bán kính R, lấy các điểm A, B, C, D sao cho sđAB=60°, sđBC=90°, sđCD=120° (Hình 7).

Trên đường tròn (O) bán kính R, lấy các điểm A, B, C, D sao cho sđ AB =60 độ, sđ BC =90 độ (ảnh 1)

a) Xác định tâm và tính theo R bán kính đường tròn ngoại tiếp của các tam giác OAB, OBC, OAD, ODC.

b) Gọi I là giao điểm của AC và BD. Tính bán kính đường tròn ngoại tiếp của các tam giác IAB, IBC, IAD, IDC.

Xem đáp án » 13/09/2024 681

Câu 5:

Cho tam giác đều ABC nội tiếp đường tròn tâm O, bán kính R.

a) Chứng minh rằng O cũng là tâm đường tròn nội tiếp tam giác ABC.

b) Vẽ tam giác IJK ngoại tiếp đường tròn (O; R) với JK // BC, IJ // AC, IK // AB. Chứng minh tam giác IJK đều.

c) Gọi R’ là bán kính của đường tròn ngoại tiếp tam giác IJK và r là bán kính của đường tròn nội tiếp tam giác ABC. Tính rR'

Xem đáp án » 13/09/2024 532

Câu 6:

Cho tam giác nhọn ABC. Các đường cao BE, CD của tam giác ABC cắt nhau tại K. Tìm tâm đường tròn ngoại tiếp mỗi tam giác sau:

a) Tam giác BDE;

b) Tam giác DEC;

c) Tam giác ADE.

Xem đáp án » 13/09/2024 450

Câu 7:

Cho tam giác nhọn ABC B^>C^  phân giác AM. Gọi O, O1, O2 lần lượt là tâm đường tròn ngoại tiếp các tam giác ABC, AMB, AMC. Chứng minh rằng:

a) OO1, OO2, O1O2 lần lượt là các đường trung trực của AB, AC, AM;

b) Tam giác OO1O2 cân.

Xem đáp án » 13/09/2024 430

Bình luận


Bình luận