Câu hỏi:

13/09/2024 149

Cho tam giác ABC nhọn. Ba đường cao AI, BK, CL. Chứng minh:

a) Các tứ giác AKIB, BLKC là các tứ giác nội tiếp;

b) Trực tâm H của tam giác ABC là tâm đường tròn nội tiếp tam giác IKL.

Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).

Tổng ôn toán Tổng ôn lý Các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack
Cho tam giác ABC nhọn. Ba đường cao AI, BK, CL. Chứng minh:  a) Các tứ giác AKIB, BLKC là các tứ giác (ảnh 1)

a) Xét ∆ABC có ba đường cao AI, BK, CL nên AI BC, BK AC, CL AB.

Do ∆ABK vuông tại K và ∆ABI vuông tại I nên hai điểm K, I cùng thuộc đường tròn đường kính AB. Do đó tứ giác AKIB nội tiếp đường tròn đường kính AB.

Do ∆BCL vuông tại L và ∆BCK vuông tại K nên hai điểm L, K cùng thuộc đường tròn đường kính BC. Do đó tứ giác BLKC nội tiếp đường tròn đường kính BC.

b) Do tứ giác AKIB nội tiếp đường tròn nên tổng hai góc đối nhau của tứ giác này bằng 180°, suy ra ABI^+AKI^=180°

CKI^+AKI^=180° (hai góc kề bù)

Nên CKI^=ABI^=180°-AKI^ hay IKC^=ABC^.

Tương tự ta cũng có AKL^=ABC^.

Suy ra AKL^=IKC^.

Từ đó ta có 90°-AKL^=90°-IKC^ hay LKH^=IKH^.

Vì vậy KH là đường phân giác của góc LKI.

Tương tự cũng có LH là đường phân giác của góc KLI.

Vậy H là tâm đường tròn nội tiếp tam giác IKL.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho tứ giác ABCD có C^+D^=90°. Gọi M, N, P, Q lần lượt là trung điểm của AB, BD, DC, CA. Chứng minh bốn điểm M, N, P, Q cùng thuộc một đường tròn. Tìm tâm đường tròn đó.

Xem đáp án » 13/09/2024 1,157

Câu 2:

Cho tam giác ABC có BC = 10 và BAC^=30°. Tính bán kính đường tròn ngoại tiếp tam giác ABC.

Xem đáp án » 13/09/2024 468

Câu 3:

Cho đường tròn (O; R). Từ điểm M nằm ngoài đường tròn (O; R), kẻ các tiếp tuyến MA và MB với đường tròn đó (A, B là các tiếp điểm) sao cho

a) Xác định tâm và bán kính đường tròn nội tiếp tam giác MAB.

b) Tính chu vi tam giác MAB.

c) Vẽ đường thẳng d đi qua M cắt đường tròn (O) tại hai điểm P, Q. Xác định vị trí của đường thẳng d sao cho MQ + MP đạt giá trị nhỏ nhất.

Xem đáp án » 14/09/2024 409

Câu 4:

Đường tròn tâm I nội tiếp tam giác ABC tiếp xúc với AB, AC lần lượt tại F và E. Kẻ CK vuông góc với BI. Gọi M, N lần lượt là trung điểm của BC, AC. Chứng minh:

a) F, E, K thẳng hàng;

b) K, N, M thẳng hàng.

Xem đáp án » 13/09/2024 383

Câu 5:

Cho tam giác ABC vuông tại A có đường cao AH = 2,4 cm và ABAC=34. Tính bán kính đường tròn nội tiếp r và bán kính đường tròn ngoại tiếp R của tam giác ABC.

Xem đáp án » 13/09/2024 207

Câu 6:

Cho lục giác đều ABCDEF cạnh bằng a.

a) Chứng minh sáu điểm A, B, C, D, E, F cùng thuộc một đường tròn. Tính theo a bán kính của đường tròn đó.

b) Chứng minh các tam giác ACE, BFD là các tam giác đều. Tính theo a bán kính đường tròn nội tiếp tương ứng của các tam giác đó.

Xem đáp án » 13/09/2024 170

Câu 7:

Cho đường tròn (I; r) cố định. Một tam giác ABC thay đổi, có chu vi bằng 16 cm và luôn ngoại tiếp đường tròn (I; r). Một tiếp tuyến song song với BC cắt các cạnh AB, AC lần lượt tại M và N. Tìm độ dài BC để MN có độ dài lớn nhất.

Xem đáp án » 14/09/2024 166

Bình luận


Bình luận
Đăng ký gói thi VIP

VIP 1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 2 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 3 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 4 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Siêu tiết kiệm - Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

Sách cho 2k7 ôn luyện THPT-vs-DGNL