Câu hỏi:

14/09/2024 1,042

Cho đường tròn (O; R). Từ điểm M nằm ngoài đường tròn (O; R), kẻ các tiếp tuyến MA và MB với đường tròn đó (A, B là các tiếp điểm) sao cho

a) Xác định tâm và bán kính đường tròn nội tiếp tam giác MAB.

b) Tính chu vi tam giác MAB.

c) Vẽ đường thẳng d đi qua M cắt đường tròn (O) tại hai điểm P, Q. Xác định vị trí của đường thẳng d sao cho MQ + MP đạt giá trị nhỏ nhất.

Sale Tết giảm 50% 2k7: Bộ 20 đề minh họa Toán, Lí, Hóa, Văn, Sử, Địa…. form chuẩn 2025 của Bộ giáo dục (chỉ từ 49k/cuốn).

Sách đề toán-lý-hóa Sách văn-sử-địa Tiếng anh & các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack
Cho đường tròn (O; R). Từ điểm M nằm ngoài đường tròn (O; R), kẻ các tiếp tuyến MA và MB với đường tròn đó (ảnh 1)

a) ⦁ Ta có MA, MB là các tiếp tuyến của đường tròn (O) lần lượt tại A và B nên MA ⊥ OA, MB ⊥ OB.

Xét ∆OAM vuông tại A, theo định lí Pythagore, ta có:

OM2=MA2+OA2=R32+R2=4R2

Suy ra OM = 2R.

Gọi I là giao điểm của (O) với tia OM, ta có OI = R nên IM = OM OI = 2R R = R.

Do đó, IM = IO = R nên I là trung điểm của OM.

Do ∆OAM vuông tại A nên trung điểm I của cạnh huyền OM là tâm đường tròn ngoại tiếp ∆OAM.

Do ∆OBM vuông tại B nên trung điểm I của cạnh huyền OM là tâm đường tròn ngoại tiếp ∆OBM.

Do đó bốn điểm A, M, B, O cùng nằm trên đường tròn (I) đường kính OM.

Vậy I là tâm đường tròn ngoại tiếp tam giác AMB. (1)

⦁ Xét ∆OAM vuông tại A, ta có: sin AMO^=OAOM=12

Suy ra AMO^=30°.

Do MA, MB là hai tiếp tuyến của đường tròn (O) cắt nhau tại M nên MA = MB và MO là tia phân giác của góc AMB, suy ra AMB^=2AMO^=2·30°=60°.

Vì vậy tam giác AMB là tam giác đều có MA=MB=AB=R3 (2)

Từ (1), (2) suy ra đường tròn nội tiếp tam giác đều MAB cạnh R3 có tâm là I và bán kính là R3·36=R2.

b) Do tam giác MAB đều cạnh R3 nên chu vi tam giác MAB bằng 3R3.

c) Ta có MBO^=MBP^+PBO^=90° suy ra  MBP^=90°-PBO^. (3)

Do ∆OBP cân tại O (do OB = OP) nên ta có:

PBO^=BPO^=180°-BOP^2=90°-12BOP^.

Xét đường tròn (O) có BQP^, BOP^ lần lượt là góc nội tiếp và góc ở tâm cùng chắn cung BP nên  BQP^=12BOP.^

Do đó PBO^=90°-BQP^Hay BQP^=90°-PBO^.  (4)

Từ (3) và (4) suy ra MBP^=BQP^.

Xét ∆MPB và ∆MBQ có:

 MBP^=MQB^, BMQ^ là góc chung

Do đó ∆MPB ᔕ ∆MBQ (g.g).

Suy ra MBMQ=MPMB hay MP·MQ=MB2=R32=3R2.

Lại có (MQ – MP)2 ≥ 0 hay (MQ + MP)2 4MQ.MP

Suy ra (MQ + MP)2 4.3R2 = 12R2

Do đó MQ+MP12R2=2R3 (dấu “=” xảy ra khi MQ = MP).

Vậy MQ + MP đạt giá trị nhỏ nhất bằng 2R3 khi đó MP = MQ hay đường thẳng d đi qua M và A hoặc d đi qua M và B.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho tứ giác ABCD có C^+D^=90°. Gọi M, N, P, Q lần lượt là trung điểm của AB, BD, DC, CA. Chứng minh bốn điểm M, N, P, Q cùng thuộc một đường tròn. Tìm tâm đường tròn đó.

Xem đáp án » 13/09/2024 2,662

Câu 2:

Đường tròn tâm I nội tiếp tam giác ABC tiếp xúc với AB, AC lần lượt tại F và E. Kẻ CK vuông góc với BI. Gọi M, N lần lượt là trung điểm của BC, AC. Chứng minh:

a) F, E, K thẳng hàng;

b) K, N, M thẳng hàng.

Xem đáp án » 13/09/2024 1,316

Câu 3:

Cho tam giác ABC có BC = 10 và BAC^=30°. Tính bán kính đường tròn ngoại tiếp tam giác ABC.

Xem đáp án » 13/09/2024 652

Câu 4:

Cho tam giác ABC nhọn. Ba đường cao AI, BK, CL. Chứng minh:

a) Các tứ giác AKIB, BLKC là các tứ giác nội tiếp;

b) Trực tâm H của tam giác ABC là tâm đường tròn nội tiếp tam giác IKL.

Xem đáp án » 13/09/2024 612

Câu 5:

Cho tam giác ABC vuông tại A có đường cao AH = 2,4 cm và ABAC=34. Tính bán kính đường tròn nội tiếp r và bán kính đường tròn ngoại tiếp R của tam giác ABC.

Xem đáp án » 13/09/2024 437

Câu 6:

Cho đường tròn (I; r) cố định. Một tam giác ABC thay đổi, có chu vi bằng 16 cm và luôn ngoại tiếp đường tròn (I; r). Một tiếp tuyến song song với BC cắt các cạnh AB, AC lần lượt tại M và N. Tìm độ dài BC để MN có độ dài lớn nhất.

Xem đáp án » 14/09/2024 362

Bình luận


Bình luận