Câu hỏi:

14/09/2024 13,585

Cho đường tròn (O; R). Từ điểm M nằm ngoài đường tròn (O; R), kẻ các tiếp tuyến MA và MB với đường tròn đó (A, B là các tiếp điểm) sao cho

a) Xác định tâm và bán kính đường tròn nội tiếp tam giác MAB.

b) Tính chu vi tam giác MAB.

c) Vẽ đường thẳng d đi qua M cắt đường tròn (O) tại hai điểm P, Q. Xác định vị trí của đường thẳng d sao cho MQ + MP đạt giá trị nhỏ nhất.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack
Cho đường tròn (O; R). Từ điểm M nằm ngoài đường tròn (O; R), kẻ các tiếp tuyến MA và MB với đường tròn đó (ảnh 1)

a) ⦁ Ta có MA, MB là các tiếp tuyến của đường tròn (O) lần lượt tại A và B nên MA ⊥ OA, MB ⊥ OB.

Xét ∆OAM vuông tại A, theo định lí Pythagore, ta có:

OM2=MA2+OA2=R32+R2=4R2

Suy ra OM = 2R.

Gọi I là giao điểm của (O) với tia OM, ta có OI = R nên IM = OM OI = 2R R = R.

Do đó, IM = IO = R nên I là trung điểm của OM.

Do ∆OAM vuông tại A nên trung điểm I của cạnh huyền OM là tâm đường tròn ngoại tiếp ∆OAM.

Do ∆OBM vuông tại B nên trung điểm I của cạnh huyền OM là tâm đường tròn ngoại tiếp ∆OBM.

Do đó bốn điểm A, M, B, O cùng nằm trên đường tròn (I) đường kính OM.

Vậy I là tâm đường tròn ngoại tiếp tam giác AMB. (1)

⦁ Xét ∆OAM vuông tại A, ta có: sin AMO^=OAOM=12

Suy ra AMO^=30°.

Do MA, MB là hai tiếp tuyến của đường tròn (O) cắt nhau tại M nên MA = MB và MO là tia phân giác của góc AMB, suy ra AMB^=2AMO^=2·30°=60°.

Vì vậy tam giác AMB là tam giác đều có MA=MB=AB=R3 (2)

Từ (1), (2) suy ra đường tròn nội tiếp tam giác đều MAB cạnh R3 có tâm là I và bán kính là R3·36=R2.

b) Do tam giác MAB đều cạnh R3 nên chu vi tam giác MAB bằng 3R3.

c) Ta có MBO^=MBP^+PBO^=90° suy ra  MBP^=90°-PBO^. (3)

Do ∆OBP cân tại O (do OB = OP) nên ta có:

PBO^=BPO^=180°-BOP^2=90°-12BOP^.

Xét đường tròn (O) có BQP^, BOP^ lần lượt là góc nội tiếp và góc ở tâm cùng chắn cung BP nên  BQP^=12BOP.^

Do đó PBO^=90°-BQP^Hay BQP^=90°-PBO^.  (4)

Từ (3) và (4) suy ra MBP^=BQP^.

Xét ∆MPB và ∆MBQ có:

 MBP^=MQB^, BMQ^ là góc chung

Do đó ∆MPB ᔕ ∆MBQ (g.g).

Suy ra MBMQ=MPMB hay MP·MQ=MB2=R32=3R2.

Lại có (MQ – MP)2 ≥ 0 hay (MQ + MP)2 4MQ.MP

Suy ra (MQ + MP)2 4.3R2 = 12R2

Do đó MQ+MP12R2=2R3 (dấu “=” xảy ra khi MQ = MP).

Vậy MQ + MP đạt giá trị nhỏ nhất bằng 2R3 khi đó MP = MQ hay đường thẳng d đi qua M và A hoặc d đi qua M và B.

Avatar

Vi Du

Cho đường tròn(O;R).Từ điểm M nằm ngoài đường tròn(O;R),kẻ các tiếp tuyến MA và MB với đường tròn đó(A,B là các tiếp điểm) sao cho MA=R căn bậc hai của 3
a,,chứng minh rằng tứ giác AMBO nội tiếp đường tròn
b,tính bán tính đường tròn nội tiép tam giác MAB

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đường tròn tâm I nội tiếp tam giác ABC tiếp xúc với AB, AC lần lượt tại F và E. Kẻ CK vuông góc với (ảnh 1)

a) Gọi J là trung điểm của IC.

Vì đường tròn (I) tiếp xúc với AC tại E nên IE AC tại E. Do đó IEC^=90° nên điểm E thuộc đường tròn tâm J, đường kính IC.

Vì CK BI tại K nên BKC^=90° hay IKC^=90° nên điểm K thuộc đường tròn tâm J, đường kính IC.

Do đó bốn điểm I, E, K, C cùng thuộc đường tròn tâm J, đường kính IC.

Như vậy, tứ giác IEKC nội tiếp đường tròn.

Suy ra KEC^=KIC^ (hai góc nội tiếp cùng chắn cung KC). (3)

Vì đường tròn (I) là đường tròn nội tiếp tam giác ABC nên AI, BI, CI là các đường phân giác của tam giác ABC.

Gọi P là giao điểm của AI và EF.

Do AI là tia phân giác của góc BAC nên PAE^=12BAC^.

Do BI là tia phân giác của góc ABC nên IBC^=12ABC^.

Do CI là tia phân giác của góc ACB nên ICB^=12ACB^.

Vì đường tròn (I) tiếp xúc với AB, AC lần lượt tại F và E hay AE, AF là hai tiếp tuyến của đường tròn (I), do đó IE = IF và AE = AF.

Suy ra AI là đường trung trực của đoạn thẳng EF nên AI EF tại P.

Xét ∆APE có APE^+PAE^+AEP^=180°

Suy ra AEP^=180°-APE^-PAE^=180°-90°-12BAC^=90°-12BAC^.

Do đó AEF^=90°-12BAC^. (1)

Xét ∆IBC có  là góc ngoài của tam giác tại đỉnh I nên

KIC^=IBC^+ICB^=12ABC^+12ACB^=ABC^+ACB^2=180°-BAC^2=90°-12BAC^. (2)

Từ (1) và (2), suy ra AEF^=KIC^. (4)

Từ (3) và (4), suy ra AEF^=KEC^.

AEF^+CEF^=180° (hai góc kề bù) nên KEC^+CEF^=180° hay KEF^=180°.

Vậy ba điểm F, E, K thẳng hàng.

b) Xét ∆KBC vuông tại K có KM là đường trung tuyến ứng với cạnh huyền BC nên KM=12BC.

Mà M là trung điểm của BC nên MB=MC=12BC.

Do đó MB = MK nên ∆MKB cân ở M, suy ra MBK^=MKB^.

Xét ∆MKB có KMC^ là góc ngoài tại đỉnh M nên KMC^=MBK^+MKB^=2MBK^=2·ABC^2=ABC^.

Xét ∆ABC có M, N lần lượt là trung điểm của BC, AC nên MN là đường trung bình của ∆ABC, suy ra MN // AB, do đó NMC^=ABC^ (hai góc đồng vị).

Suy ra KMC^=NMC^ vì vậy ba điểm K, N, M thẳng hàng.

Lời giải

Cho tam giác ABC nhọn. Ba đường cao AI, BK, CL. Chứng minh:  a) Các tứ giác AKIB, BLKC là các tứ giác (ảnh 1)

a) Xét ∆ABC có ba đường cao AI, BK, CL nên AI BC, BK AC, CL AB.

Do ∆ABK vuông tại K và ∆ABI vuông tại I nên hai điểm K, I cùng thuộc đường tròn đường kính AB. Do đó tứ giác AKIB nội tiếp đường tròn đường kính AB.

Do ∆BCL vuông tại L và ∆BCK vuông tại K nên hai điểm L, K cùng thuộc đường tròn đường kính BC. Do đó tứ giác BLKC nội tiếp đường tròn đường kính BC.

b) Do tứ giác AKIB nội tiếp đường tròn nên tổng hai góc đối nhau của tứ giác này bằng 180°, suy ra ABI^+AKI^=180°

CKI^+AKI^=180° (hai góc kề bù)

Nên CKI^=ABI^=180°-AKI^ hay IKC^=ABC^.

Tương tự ta cũng có AKL^=ABC^.

Suy ra AKL^=IKC^.

Từ đó ta có 90°-AKL^=90°-IKC^ hay LKH^=IKH^.

Vì vậy KH là đường phân giác của góc LKI.

Tương tự cũng có LH là đường phân giác của góc KLI.

Vậy H là tâm đường tròn nội tiếp tam giác IKL.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

Cho tam giác ABC vuông tại A có đường cao AH = 2,4 cm và ABAC=34. Tính bán kính đường tròn nội tiếp r và bán kính đường tròn ngoại tiếp R của tam giác ABC.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

Cho tam giác ABC có BC = 10 và BAC^=30°. Tính bán kính đường tròn ngoại tiếp tam giác ABC.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay