Câu hỏi:

27/09/2024 698

Biết rằng với mỗi góc nhọn α, ta có sin2 α + cos2 α = 1, không dùng MTCT, hãy tính sin2 25° + sin2 35° + sin2 45° + sin2 55° + sin2 65°.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Do các góc phụ nhau có sin α = cos (90°– α) nên ta có:

sin 65° = cos 25°, sin 55° = cos 35°

Ta có:

sin2 25° + sin2 35° + sin2 45° + sin2 55° + sin2 65°.

= sin2 25° + sin2 35° + sin2 45° + cos2 35° + cos2 25°

= (sin2 25° + cos2 25°) + (sin2 35° + cos2 35°) + sin2 45°

= 1 + 1 + 0,5

= 2,5.

Vậy sin2 25° + sin2 35° + sin2 45° + sin2 55° + sin2 65° = 2,5.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

a) Ta thấy (45° – α) + (45° + α) = 90°, suy ra đây là hai góc phụ nhau.

Do đó sin (45° – α) = cos (45° + α), cos (45°– α) = sin (45° + α).

b) sin 25° + sin 35° + sin 45° – cos 45° – cos 55° – cos 65°.

= (sin 25°– cos 65°) + (sin 35° – cos 55°) + (sin 45° – cos 45°) = 0.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP