Câu hỏi:

11/10/2024 1,138

Trong mặt phẳng tọa độ \[Oxy,\] cho điểm \(C\left( {2\,;\,\,4} \right)\) thuộc đồ thị \(\left( P \right)\) của hàm số \(y = a{x^2},\) với \(a \ne 0.\) Điểm \(C'\) đối xứng với điểm \(C\) qua trục tung \[Oy.\] Khẳng định nào sau đây là đúng? 

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án đúng là: B

Đồ thị hàm số \(y = a{x^2},\) với \(a \ne 0\) đối xứng qua trục \(Oy\) nên điểm \(C'\) đối xứng với điểm \(C\) qua trục tung \[Oy\] thì \(C' \in \left( P \right)\)\({x_{C'}} = - {x_C};\,\,{y_{C'}} = {y_C}\) nên \(C'\left( { - 2\,;\,4} \right)\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đáp số: \(76{\rm{\;m}}.\)

Ta có \(Bx\)\(AC\) cùng nằm trên phương ngang nên \(Bx\,{\rm{//}}\,AC,\) do đó \[\widehat {ACB} = \widehat {xBC} = 20^\circ ;\] \(\widehat {ADB} = \widehat {xBD} = 30^\circ \) (các cặp góc so le trong).

Xét tam giác \(ABC\) vuông tại \(A\), ta có \[AC = AB \cdot \cot C = \frac{{AB}}{{\tan C}} = \frac{{75}}{{\tan 20^\circ }}{\rm{\;(m)}}{\rm{.}}\]

Xét tam giác \(ABD\) vuông tại \(A\), ta có \(AD = AB \cdot \cot D = \frac{{AB}}{{\tan D}} = \frac{{75}}{{\tan 30^\circ }}{\rm{\;(m)}}{\rm{.}}\)

Ta có \(CD = AC - AD = \frac{{75}}{{\tan 20^\circ }} - \frac{{75}}{{\tan 30^\circ }} \approx 76{\rm{\;(m)}}{\rm{.}}\)

Vậy con tàu đã đi được xấp xỉ \(76{\rm{\;(m)}}\) giữa hai lần quan sát.

Lời giải

Đáp án:               a) Đúng;         b) Sai;            c) Đúng;         d) Sai.

a) Tổng số quyển vở đã mua là 500 quyển nên \(x + y = 500\).

b) Tổng số tiền nhà trường mua 500 quyển vở là 4 200 000 đồng nên \(8\,\,000x + 9\,\,000y = 4\,\,200\,\,000\) hay \(8x + 9y = 4\,\,200\)

c) Ta có hệ phương trình \(\left\{ {\begin{array}{*{20}{l}}{x + y = 500}\\{8x + 9y = 4\,\,200.}\end{array}} \right.\)

Sử dụng máy tính cầm tay giải hệ phương trình (1) ta được \(\left\{ {\begin{array}{*{20}{l}}{x = 300}\\{y = 200}\end{array}} \right.\) (thỏa mãn điều kiện).

d) Gọi \(u,\,\,v\) lần lượt là số học sinh Xuất sắc và số học sinh Giỏi \(\left( {u,\,\,v \in {\mathbb{N}^*}} \right)\).

Mỗi học sinh Xuất sắc được thưởng 02 quyển vở loại thứ nhất và 01 quyển vở loại thứ hai nên ta có phương trình \(2u + v = 300.\)

Mỗi học sinh Giỏi được thưởng 01 quyển vở loại thứ nhất và 01 quyển vở loại thứ hai nên ta có phương trình \(u + v = 200.\)

Ta có hệ phương trình \(\left\{ {\begin{array}{*{20}{l}}{2u + v = 300}\\{u + v = 200}\end{array}} \right.\) (2).

Sử dụng máy tính cầm tay giải hệ phương trình (2) ta được \(\left\{ {\begin{array}{*{20}{l}}{u = 100}\\{v = 100}\end{array}} \right.\) (thỏa mãn điều kiện).

Vậy có tổng \(100 + 100 = 200\) học sinh Xuất sắc và Giỏi, chiếm \(40\% \) tổng số học sinh cả trường.

Do đó, tổng số học sinh của trường là \(200:40\% = 500\) (học sinh).

Câu 4

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP