Điều kiện xác định của phương trình \[\frac{2}{{x + 3}} - \frac{{5x}}{{{x^3} + 27}} = \frac{{ - x}}{{{x^2} - 3x + 9}}\] là
A. \[x \ne 0\] và \[x \ne 3.\]
B. \[x \ne - 3.\]
C. \[x \ne 3.\]
D. \[x \in \mathbb{R}\,.\]
Quảng cáo
Trả lời:

Đáp án đúng là: B
Ta có \[{x^3} + 27 = \left( {x + 3} \right)\left( {{x^2} - 3x + 9} \right)\].
Ta thấy rằng \[{x^2} - 3x + 9 = {\left( {x - \frac{3}{2}} \right)^2} + \frac{{27}}{4} \ne 0\] với mọi \[x \in \mathbb{R}.\]
Điều kiện xác định của phương trình đã cho là: \[x + 3 \ne 0\], tức là \[x \ne - 3.\]
Vậy ta chọn phương án B.
Hot: 500+ Đề thi vào 10 file word các Sở Hà Nội, TP Hồ Chí Minh có đáp án 2025 (chỉ từ 100k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Đáp án đúng là: B
Điều kiện xác định: \[x \ne 2\] và \[x \ne 3.\]
\[\frac{2}{{x - 2}} - \frac{3}{{x - 3}} = \frac{{3x - 20}}{{\left( {x - 3} \right)\left( {x - 2} \right)}}\]
\[\frac{{2\left( {x - 3} \right)}}{{\left( {x - 3} \right)\left( {x - 2} \right)}} - \frac{{3\left( {x - 2} \right)}}{{\left( {x - 3} \right)\left( {x - 2} \right)}} = \frac{{3x - 20}}{{\left( {x - 3} \right)\left( {x - 2} \right)}}\]
\[2\left( {x - 3} \right) - 3\left( {x - 2} \right) = 3x - 20\]
\[2x - 6 - 3x + 6 = 3x - 20\]
\[ - 4x = - 20\]
\[x = 5.\]
Ta thấy \[x = 5\] thỏa mãn điều kiện của phương trình đã cho.
Vậy phương trình đã cho có một nghiệm là \[x = 5.\]
Do đó ta chọn phương án B.
Lời giải
Đáp án đúng là: B
Theo đề, ta có \[A = B\]
Tức là, \[\frac{3}{{3x + 1}} + \frac{2}{{1 - 3x}} = \frac{{x - 5}}{{9{x^2} - 1}}\] (1)
Điều kiện xác định: \[x \ne \frac{1}{3}\] và \[x \ne - \frac{1}{3}.\]
Từ (1), ta có: \[\frac{3}{{3x + 1}} - \frac{2}{{3x - 1}} = \frac{{x - 5}}{{\left( {3x + 1} \right)\left( {3x - 1} \right)}}\]
\[\frac{{3\left( {3x - 1} \right)}}{{\left( {3x + 1} \right)\left( {3x - 1} \right)}} - \frac{{2\left( {3x + 1} \right)}}{{\left( {3x - 1} \right)\left( {3x + 1} \right)}} = \frac{{x - 5}}{{\left( {3x + 1} \right)\left( {3x - 1} \right)}}\]
\[3\left( {3x - 1} \right) - 2\left( {3x + 1} \right) = x - 5\]
\[9x - 3 - 6x - 2 = x - 5\]
\[2x = 0\]
\[x = 0\] (thỏa mãn điều kiện xác định).
Vậy khi \[x = 0\] thì \[A = B.\]
Do đó ta chọn phương án B.
Câu 3
A. \[18\] (sản phẩm/giờ).
B. \[9\] (sản phẩm/giờ).
C. \[3\] (sản phẩm/giờ).
D. \[10\] (sản phẩm/giờ).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
A. \[10\] giây.
B. \[8\] giây.
C. \[4\] giây.
D. \[15\] giây.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
A. \(x + 5 = x - 3\).
B. \(\left( {x + 5} \right)\left( {x - 3} \right) = 1\).
C. \(\left( {x + 5} \right)\left( {x - 3} \right) = 0\).
D. \(\left( {x + 5} \right)\left( {x - 3} \right) \ne 0\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
A. \(\left( {x - 5} \right)\left( {3 - 2x} \right) = 0\).
B. \(\left( {x - 5} \right)\left( {2x - 3} \right) = 0\).
C. \(\left( {x - 5} \right)\left( {3 + 2x} \right) = 0\).
D. \(\left( {5 - x} \right)\left( {3 - 2x} \right) = 0\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
A. \[x = - 7.\]
B. \[x = 7.\]
C. \[x = - \frac{7}{3}.\]
D. \[x = - \frac{3}{7}.\]
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.