Câu hỏi:

16/10/2024 19,756

Một chuyển động thẳng xác định bởi phương trình \(s = \frac{1}{3}{t^3} - 3{t^2} + 5t + 2\) với \(t \ge 0\), trong đó t tính bằng giây và s tính bằng mét. Trong khoảng thời gian nào vận tốc của vật tăng?

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án đúng là: D

Ta có \(v\left( t \right) = s' = {t^2} - 6t + 5\).

Xét hàm số \(v\left( t \right) = {t^2} - 6t + 5\) với t ≥ 0

Có v'(t) = 2t – 6; 2t – 6 = 0 t = 3.

Bảng biến thiên

Một chuyển động thẳng xác định bởi phương trình  s = 1/3 t^3 − 3 t^2 + 5 t + 2  với  t ≥ 0 , trong đó t tính bằng giây và s tính bằng mét. Trong khoảng thời gian nào vận tốc của vật tăng? (ảnh 1)

Dựa vào bảng biến thiên ta có trong khoảng thời gian (3; +∞) thì vận tốc tăng.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 2

Lời giải

Đáp án đúng là: D

Dựa vào bảng biến thiên ta có hàm số nghịch biến trên khoảng \(\left( {1\,;\,2} \right)\).

Câu 3

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP