Câu hỏi:

25/10/2024 49

Cho ∆ABC ∆A'B'C' với tỉ số đồng dạng k > 0. Gọi (O; R) và (O'; R') lần lượt là đường tròn ngoại tiếp các tam giác ABC và A'B'C'. Gọi (I; r) và (I'; r') lần lượt là đường tròn nội tiếp các tam giác ABC và A'B'C'. Chứng minh rằng RR'=rr'=k.

Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).

Tổng ôn toán Tổng ôn sử Các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack
Cho ∆ABC ᔕ ∆A'B'C' với tỉ số đồng dạng k > 0. Gọi (O; R) và (O'; R') lần (ảnh 1)
Cho ∆ABC ᔕ ∆A'B'C' với tỉ số đồng dạng k > 0. Gọi (O; R) và (O'; R') lần (ảnh 2)

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho tam giác ABC có trực tâm H và nội tiếp đường tròn (O). Chứng minh rằng:

a) OBC^=90°BAC^;

b) BAH^=OAC^.

Xem đáp án » 25/10/2024 490

Câu 2:

Cho tam giác ABC cân tại A và nội tiếp đường tròn (O). Tính số đo các góc của tam giác ABC, biết rằng BOC^=100°. 

Xem đáp án » 25/10/2024 250

Câu 3:

Cho tam giác ABC vuông tại Acó AB = 4 cm, AC = 6 cm. Tính bán kính của đường tròn nội tiếp tam giác ABC.

Xem đáp án » 25/10/2024 220

Câu 4:

Cho tam giác ABC nội tiếp đường tròn (O). Biết rằng ACB^=50°,  ABC^=70°, tính số đo các cung nhỏ BC,  CA,  AB của đường tròn (O).

Xem đáp án » 25/10/2024 173

Câu 5:

Tính chu vi và diện tích của tam giác đều nội tiếp một đường tròn bán kính 3 cm.

Xem đáp án » 25/10/2024 168

Câu 6:

Cho tam giác ABC nội tiếp đường tròn (O) và ngoại tiếp đường tròn (I). Tia AI cắt (O) tại X (khác A). Chứng minh rằng X là tâm của đường tròn ngoại tiếp tam giác BIC.

Xem đáp án » 25/10/2024 149

Câu 7:

Tính bán kính và chu vi của đường tròn ngoại tiếp tam giác ABC có ba cạnh AB = 6 cm, AC = 8 cm và BC =10 cm.

Xem đáp án » 25/10/2024 122

Bình luận


Bình luận
Đăng ký gói thi VIP

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Siêu tiết kiệm - Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

Vietjack official store