Câu hỏi:

13/11/2024 168 Lưu

Khẳng định nào sau đây là sai?

A. Trong một đường tròn, góc nội tiếp chắn nửa đường tròn là góc vuông.

B. Trong một đường tròn, số đo góc nội tiếp bằng nửa số đo góc ở tâm cùng chắn một cung.

C. Trong một đường tròn, hai góc nội tiếp cùng chắn một cung thì bằng nhau.

D. Trong một đường tròn, hai góc nội tiếp bằng nhau thì cùng chắn một cung.

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Đáp án đúng là: D

Trong một đường tròn, hai góc nội tiếp bằng nhau thì có thể cùng chắn một cung hoặc chắn hai cung bằng nhau.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đáp án đúng là: C

Cho nửa đường tròn đường kính  A B  và điểm  C  thuộc nửa đường tròn này sao cho  ˆ A B C = 30 ∘ . Số đo của cung  B C  làO10-2024-GV154 (ảnh 1)

Vì \[\widehat {ABC}\] là góc nội tiếp chắn cung \(AC\) nên ta có

Số đo của nửa đường tròn là

Số đo của cung \[BC\] là:

Lời giải

Đáp án đúng là: B

Cho tam giác nhọn  A B C  có 3 đỉnh nằm trên đường tròn  ( O ) , đường kính  B D  . Biết  ˆ B A C = 45 ∘ . Số đo của góc  ˆ C B D  là (ảnh 1)

Đường tròn \[\left( O \right)\] có \[\widehat {CDB}\] và \[\widehat {CAB}\] là hai góc nội tiếp cùng chắn cung \[CB\] nên \(\widehat {CDB} = \widehat {CAB} = 45^\circ \).

Do \[\widehat {DCB}\] là góc nội tiếp chắn nửa đường tròn \[\left( O \right)\] nên \(\widehat {DCB} = 90^\circ \).

Xét \(\Delta DCB\) có: \(\widehat {CBD} + \widehat {CDB} + \widehat {DCB} = 180^\circ \) (tổng ba góc của một tam giác)

Suy ra \(\widehat {CBD} = 180^\circ - \widehat {CDB} - \widehat {DCB} = 180^\circ - 45^\circ - 90^\circ = 45^\circ \).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

A. \[72^\circ .\]

B. \[288^\circ .\]

C. \[60^\circ .\]

D. \[300^\circ .\]

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP