Câu hỏi:

16/11/2024 147 Lưu

I. Nhận biết

Đường tròn ngoại tiếp đa giác là đường tròn

A. tiếp xúc với tất cả các cạnh của đa giác đó.

B. đi qua tất cả các đỉnh của đa giác đó.

C. cắt tất cả các cạnh của đa giác đó.

D. đi qua tâm của đa giác đó.

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Đáp án đúng là: B

Đường tròn ngoại tiếp đa giác là đường tròn đi qua tất cả các đỉnh của đa giác đó.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đáp án đúng là: B

Cho  Δ A B C  vuông tại  A , có  A B = 6 c m  và  A C = 8 c m  ngoại tiếp đường tròn  ( I ; r ) . Bán kính  r  của đường tròn là (ảnh 1)

Đường tròn \[\left( {I;{\rm{ }}r} \right)\] tiếp xúc với các cạnh \[AB,{\rm{ }}AC,{\rm{ }}BC\] theo thứ tự \[M,{\rm{ }}N,{\rm{ }}P\].

Ta có: \({S_{AIB}} = \frac{1}{2}IM \cdot AB = \frac{1}{2} \cdot r \cdot AB & \left( 1 \right)\)

\({S_{AIC}} = \frac{1}{2}IN \cdot AC = \frac{1}{2} \cdot r \cdot AC & \left( 2 \right)\)

\({S_{BIC}} = \frac{1}{2}r.BC & & & \left( 3 \right)\)

Cộng vế theo vế ở các biểu thức \(\left( 1 \right),\,\,\left( 2 \right),\,\,\left( 3 \right)\), ta được:

\(\frac{{{S_{AIB}} + {S_{AIC}} + {S_{BIC}}}}{{{S_{ABC}}}} = \frac{1}{2}r\left( {AB + AC + BC} \right)\).

Mà \({S_{ABC}} = \frac{1}{2}AB.AC = \frac{1}{2}.6.8 = 24\) (cm2), \(BC = \sqrt {{6^2} + {8^2}} = 10\) (cm)

Nên ta có: \(24 = \frac{1}{2}r \cdot \left( {6 + 8 + 10} \right)\) hay \(\frac{1}{2}r \cdot 12 = 24\).

Do đó \(r = 2\,\,{\rm{cm}}\).

Câu 2

A. Tam giác \[ABC\] là tam giác đều.

B. \(\widehat {EOA} = \widehat {EAO}\).

C. \(\widehat {AOF} = \widehat {OAF}\).

D. \[AO\] là tia phân giác của \(\widehat {BAC}\).

Lời giải

Đáp án đúng là: D

Cho  Δ A B C  cân tại  A  nội tiếp đường tròn  ( O ) . Gọi  E , F  theo thứ tự là hình chiếu của  ( O )  lên  A B  và  A C . Khẳng định nào sau đây là đúng? (ảnh 1)

Ta có: \[\Delta ABC\] cân tại \[A\] suy ra \[AB = AC\] do đó \[OE = OF\].

Xét hai tam giác vuông \[AOE\] và \[AOF\] có:

Cạnh \[OA\] chung ; \[OE = OF\] (chứng minh trên)

Suy ra \[\Delta AOE = \Delta AOF\] (cạnh huyền – cạnh góc vuông)

Suy ra \(\widehat {{A_1}} = \widehat {{A_2}}\) (hai góc tương ứng); \(AE = AF\) (hai cạnh tương ứng).

Vậy \[AO\] là phân giác của \(\widehat {BAC}\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

A. trung trực.

B. phân giác trong.

C. phân giác ngoài.

D. đường cao.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

A. \(\frac{{a\sqrt 3 }}{6}\).

B. \(\frac{{a\sqrt 3 }}{3}\).

C. \(\frac{a}{6}\).

D. \(\frac{a}{3}\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A. \(\frac{R}{{\sqrt 3 }}\).

B. \(R\sqrt 3 \).

C. \(R\sqrt 6 \).

D. \(3R\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP