Câu hỏi:
19/12/2024 55Một khu đất có dạng nửa hình tròn với bán kính là 14 m Người ta muốn xây dựng một khu vui chơi hình chữ nhật nội tiếp nửa đường tròn (như hình vẽ). Biết rằng một cạnh của hình chữ nhật nằm dọc trên đường kính của nửa đường tròn. Tính diện tích lớn nhất của khu vui chơi có thể xây dựng.
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Đáp án đúng là: B
Gọi x là độ dài c
ạnh hình chữ nhật không nằm dọc theo đường kính đường tròn (0 < x < 14).Khi đó, độ dài cạnh của hình chữ nhật không nằm dọc trên đường tròn là: \[2\sqrt {{{14}^2} - {x^2}} {\rm{ }}\](m).
Diện tích hình chữ nhật là S = 2x\[\sqrt {{{14}^2} - {x^2}} {\rm{ }}\](m2).
Ta có: S2 = 4x2(196 – x2) = −4x4 + 4x2.196 – 1962 + 1962 = −(2x2 – 196)2 + 1962
Nhận thấy –(2x2 – 196)2 ≤ 0, do đó –(2x2 – 196)2 + 1962 ≤ 1962.
Suy ra S2 ≤ 1962, do đó S ≤ \[\sqrt {{{196}^2}} \] hay S ≤ 196 m2.
Dấu “=” xảy ra khi –(2x2 – 196)2 = 0 hay x = \[7\sqrt 2 \] (m).
Vậy diện tích lớn nhất của khu vui chơi đó là 196 m2.
>CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Bạn Nam làm một căn nhà đồ chơi bằng gỗ có phần mái là một chóp tứ giác đều. Biết các cạnh bên của mái nhà bạn Nam dùng các thanh gỗ có chiều dài 16 cm. Bạn Nam dự định dùng giấy màu để phủ kín phần mái nhà. Gọi độ dài cạnh đáy của phần mái là 2x (cm). Hỏi diện tích giấy màu cần sử dụng nhiều nhất là bao nhiêu?
Câu 2:
Bác Sơn muốn xây một bể chứa nước có dạng hình hộp chữ nhật không nắp có thể tích bằng 72 m3. Đáy bể có dạng hình chữ nhật với chiều rộng là x (m), chiều dài gấp đôi chiều rộng. Bác Sơn muốn phần diện tích cần xây (bao gồm diện tích xung quanh và diện tích đáy bể) là nhỏ nhất để tiết kiệm chi phí thì x phải bằng bao nhiêu (kết quả làm tròn đến hàng phần trăm)?
Câu 3:
Bác An có mảnh vườn hình vuông ABCD có cạnh bằng 4 m. Ở bốn góc vườn, bác An muốn trồng hoa vào các phần đất hình tam giác vuông bằng nhau (hình vẽ). Hãy tính khoảng cách từ góc vườn A đến vị trí E sao cho tứ giác EFGH có chu vi nhỏ nhất.
Câu 4:
Một cửa hàng chuyên kinh doanh máy tính tại Hà Nội. Một loại máy tính có giá nhập vào một chiếc là 18 triệu đồng và bán ra với giá 22 triệu đồng. Với giá bán như trên thì một năm số lượng máy tính bán được dự kiến 500 chiếc. Để tăng thêm lượng tiêu thụ dòng máy tính này, chủ cửa hàng dự định giảm giá bán và ước lượng cứ giảm 200 nghìn một chiếc thì số lượng máy tính bán ra trong năm sẽ tăng 50 chiếc. Vậy cửa hàng phải bán với giá bao nhiêu để sau khi giảm giá lợi nhuận thu được sẽ cao nhất?
Câu 5:
Một sợi dây thép AC có chiều dài 8 m được chia thành hai phần AB, AC (như hình vẽ minh họa dưới đây).
Mỗi phần đều được uốn thành một hình vuông. Hỏi phải chia sợi dây ban đầu như thế nào để tổng diện tích hai hình vuông thu được sau khi uốn là nhỏ nhất?
Câu 6:
Xưa kia có một vị tể tướng nổi tiếng thông thái. Đến khi tể tướng muốn cáo quan về quê, nhà vua liền ban thưởng bằng cách đưa cho tể tướng một đoạn dây dài 300 mét và nói: “Ngươi hãy căng sợi dây này thành một hình chữ nhật, sao cho hai đầu dây chạm vào nhau. Khi đó, mảnh đất hình chữ nhật sẽ thuộc về ngươi”. Hỏi tể tướng sẽ căng sợi dây như thế nào để mảnh đất có diện tích lớn nhất?
Bộ 10 đề thi cuối kì 1 Toán 9 Kết nối tri thức có đáp án - Đề 01
23 câu Trắc nghiệm Toán 9 Bài 1: Căn thức bậc hai có đáp án
Dạng 6: Bài toán về tăng giá, giảm giá và tăng, giảm dân số có đáp án
Bộ 10 đề thi cuối kì 1 Toán 9 Kết nối tri thức có đáp án - Đề 02
Bộ 10 đề thi cuối kì 1 Toán 9 Kết nối tri thức có đáp án - Đề 03
21 câu Trắc nghiệm Toán 9 Bài 1: Căn bậc hai có đáp án
Bộ 10 đề thi cuối kì 1 Toán 9 Kết nối tri thức có đáp án - Đề 04
Bộ 10 đề thi cuối kì 1 Toán 9 Kết nối tri thức có đáp án - Đề 06
về câu hỏi!