Câu hỏi:

19/12/2024 8,100 Lưu

Một tấm bìa cứng hình chữ nhật có chiều dài là 50 cm và chiều rộng là 30 cm. Bạn Linh cắt ở mỗi góc một tấm bìa hình vuông cạnh x (cm) và xếp phần còn lại thành một hình hộp không nắp. Tìm x để diện tích xung quanh của hình hộp chữ nhật sau khi cắt là lớn nhất.

A. x = 800.

B. x = 100.

C. x = 10.

D. x = 8.

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Đáp án đúng là: C

Diện tích tấm bìa hình chữ nhật này là: 50.30 = 1500 (cm2).

Chiều dài sau khi cắt tấm bìa là: 50 – 2x (cm).

Chiều rộng sau khi cắt tấm bìa là: 30 – 2x (cm).

Diện tích xung quanh của hộp là:

2x (50 – 2x + 30 – 2x) = 2x(80 – 4x) = −8x2 + 160x (cm2).

Diện tích xung quanh của hình hộp chữ nhật sau khi cắt là lớn nhất thì

−8x2 + 160x đạt giá trị lớn nhất.

Ta có: −8x2 + 160x = −8(x2 – 20x + 100) + 800 = −8(x – 10)2 + 800.

Nhận thấy −8(x – 10)2 ≤ 0 nên −8(x – 10)2 + 800 ≤ 800.

Dấu “=” xảy ra khi x – 10 = 0 hay x = 10.

Vậy diện tích xung quanh hình hộp chữ nhật là 800 cm2 khi x = 10 cm.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đáp án đúng là: A

Gọi x là giá mà cửa hàng phải bán để sau khi giảm giá thu được lợi nhuận cao nhất (x > 0, triệu đồng).

Theo đề, số tiền mà của hàng sẽ giảm là 22 – x (triệu đồng) mỗi chiếc.

Khi đó, số lượng máy tính tăng lên là: 50(22 – x) : 0,2 = 250(22 – x) chiếc.

Do đó, số lượng máy tính mà doanh nghiệp bán được là:

500 + 250(22 – x) = 6000 – 250x (chiếc)

Doanh thu mà cửa hàng sẽ đạt được là: (6000 – 250x)x (triệu đồng).

Tiền mà cửa hàng bỏ ra để nhập máy tính sẽ là:

18(6000 – 250x) = 108000 – 4500x (triệu đồng)

Lợi nhuận mà cửa hàng thu được sau khi bán giá mới là:

(6000 – 250x)x – 108000 + 4500x = −250x2 + 10500x – 108000 (triệu đồng).

Ta có: −250x2 + 10500x – 108000 = −250(x – 21)2 + 2250 ≤ 2250.

Dấu “=” xảy ra khi −250(x – 21)2 = 0 suy ra x – 21 = 0 khi x = 21.

Vậy cửa hàng bán với giá 21 triệu đồng thì doanh thu nhận được là lớn nhất.

Lời giải

Đáp án đúng là: B

Gọi x là độ dài c

ạnh hình chữ nhật không nằm dọc theo đường kính đường tròn (0 < x < 14).

Khi đó, độ dài cạnh của hình chữ nhật không nằm dọc trên đường tròn là: \[2\sqrt {{{14}^2} - {x^2}} {\rm{ }}\](m).

Diện tích hình chữ nhật là S = 2x\[\sqrt {{{14}^2} - {x^2}} {\rm{ }}\](m2).

Ta có: S2 = 4x2(196 – x2) = −4x4 + 4x2.196 – 1962 + 1962 = −(2x2 – 196)2 + 1962

Nhận thấy –(2x2 – 196)2 ≤ 0, do đó –(2x2 – 196)2 + 1962 ≤ 1962.

Suy ra S2 ≤ 1962, do đó S ≤ \[\sqrt {{{196}^2}} \] hay S ≤ 196 m2.

Dấu “=” xảy ra khi –(2x2 – 196)2 = 0 hay x = \[7\sqrt 2 \] (m).

Vậy diện tích lớn nhất của khu vui chơi đó là 196 m2.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP