Câu hỏi:

23/12/2024 1,889

Cho hàm số y = f(x) liên tục trên ℝ và có đạo hàm f'(x) = (1 – x)2(x + 1)3(3 – x). Hàm số y = f(x) đồng biến trên khoảng nào dưới đây?

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án đúng là: C

Ta có: f'(x) = (1 – x)2(x + 1)3(3 – x) = 0 x = 1 hoặc x = −1 hoặc x = 3.

Bảng xét dấu:

Cho hàm số y = f(x) liên tục trên ℝ và có đạo hàm f'(x) = (1 – x)2(x + 1)3(3 – x). Hàm số y = f(x) đồng biến trên khoảng nào dưới đây? (ảnh 1)

Hàm số đồng biến trên các khoảng (1; 3).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

Lời giải

Đáp án đúng là: C

Hàm số y = 3x3 + 3x – 2 có tập xác định D = ℝ.

Có y' = 27x2 + 3 > 0, ∀x ∈ ℝ, suy ra hàm số đồng biến trên khoảng (−∞; +∞).

Lời giải

Đáp án đúng là: D

Từ bảng xét dấu ta thấy hàm số đã cho nghịch biến trên khoảng (−∞; −1) và (−1; 1).

Vậy hàm số đã cho nghịch biến trên khoảng (−∞; −1).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP