Câu hỏi:

10/01/2025 2,514 Lưu

Hằng ngày mực nước của một con kênh lên xuống theo thủy triều. Độ sâu h (m) của mực nước trong kênh tại thời điểm t (giờ) (0 ≤ t ≤ 24) trong ngày được xác định bởi công thức \(h = 2\cos \left( {\frac{{\pi t}}{{12}} + \frac{\pi }{3}} \right) + 5\). Tìm khoảng thời gian trong ngày mà độ sâu của mực nước trong kênh tăng dần.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án đúng là: B

Ta có \(h\left( t \right) = 2\cos \left( {\frac{{\pi t}}{{12}} + \frac{\pi }{3}} \right) + 5\)\( \Rightarrow h'\left( t \right) = - \frac{\pi }{6}\sin \left( {\frac{{\pi t}}{{12}} + \frac{\pi }{3}} \right)\).

\(h'\left( t \right) = 0 \Leftrightarrow \sin \left( {\frac{{\pi t}}{{12}} + \frac{\pi }{3}} \right) = 0 \Leftrightarrow \frac{{\pi t}}{{12}} + \frac{\pi }{3} = k\pi \)\( \Leftrightarrow t = - 4 + 12k\,\,\left( {k \in \mathbb{Z}} \right)\).

Mà 0 ≤ t ≤ 24 nên \(0 \le - 4 + 12k \le 24 \Leftrightarrow \frac{1}{3} \le k \le \frac{7}{3}\) k ∈ {1; 2}.

Do đó h'(t) = 0 t = 8 hoặc t = 20.

h(t) đồng biến trên khoảng (8; 20) hay trong khoảng từ 8 giờ đến 20 giờ độ sâu của mực nước trong kênh tăng dần.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đáp án đúng là: B

Xét hàm số \[y = C(x) = \frac{{30x}}{{{x^2} + 2}}\] trên khoảng x ∈ (0; 6).

Ta có: \[y' = \frac{{ - 30{x^2} + 60}}{{{{\left( {{x^2} + 2} \right)}^2}}}\].

\[y' = 0 \Leftrightarrow \frac{{ - 30{x^2} + 60}}{{{{\left( {{x^2} + 2} \right)}^2}}} = 0 \Leftrightarrow \left[ \begin{array}{l}x = \sqrt 2 \\x = - \sqrt 2 \,\end{array} \right.\]do x ∈ (0; 6)\[ \Rightarrow x = \sqrt 2 \].

Bảng biến thiên:

Từ bảng biến thiên suy ra: nồng độ thuốc trong máu C(x) đạt giá trị cực đại là \[\frac{{15\sqrt 2 }}{2}\left( {{\rm{mg/l}}} \right)\] trong khoảng thời gian 6 phút sau khi tiêm.

Câu 2

Lời giải

Đáp án đúng là: D

Ta có v(t) = x'(t) = 3t2 – 12t + 9.

Xét v(t) = 3t2 – 12t + 9

v'(t) = 6t – 12 = 0 t = 2.

Bảng biến thiên

Vận tốc tăng trong khoảng thời gian t ∈ (2; 10) và giảm trong khoảng thời gian t ∈ (0; 2).