Câu hỏi:
10/01/2025 9,728Xét một chất điểm chuyển động dọc theo trục Ox. Tọa độ của chất điểm tại thời điểm t được xác định bởi hàm số x(t) = t3 – 6t2 + 9t với t ≥ 0. Khi đó x'(t) là vận tốc của chất điểm tại thời điểm t, kí hiệu v(t), v'(t) là gia tốc chuyển động của chất điểm tại thời điểm t. Trong khoảng thời gian nào vận tốc của chất điểm tăng, trong khoảng thời gian nào vận tốc của chất điểm giảm?
Quảng cáo
Trả lời:
Đáp án đúng là: D
Ta có v(t) = x'(t) = 3t2 – 12t + 9.
Xét v(t) = 3t2 – 12t + 9
v'(t) = 6t – 12 = 0 t = 2.
Bảng biến thiên
Vận tốc tăng trong khoảng thời gian t ∈ (2; 10) và giảm trong khoảng thời gian t ∈ (0; 2).
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Đáp án đúng là: B
Xét hàm số \[y = C(x) = \frac{{30x}}{{{x^2} + 2}}\] trên khoảng x ∈ (0; 6).
Ta có: \[y' = \frac{{ - 30{x^2} + 60}}{{{{\left( {{x^2} + 2} \right)}^2}}}\].
\[y' = 0 \Leftrightarrow \frac{{ - 30{x^2} + 60}}{{{{\left( {{x^2} + 2} \right)}^2}}} = 0 \Leftrightarrow \left[ \begin{array}{l}x = \sqrt 2 \\x = - \sqrt 2 \,\end{array} \right.\]do x ∈ (0; 6)\[ \Rightarrow x = \sqrt 2 \].
Bảng biến thiên:
Từ bảng biến thiên suy ra: nồng độ thuốc trong máu C(x) đạt giá trị cực đại là \[\frac{{15\sqrt 2 }}{2}\left( {{\rm{mg/l}}} \right)\] trong khoảng thời gian 6 phút sau khi tiêm.
Lời giải
Đáp án đúng là: C
Có f'(t) = 90t – 3t2; f"(t) = 90 – 6t; f"(t) = 0 t = 15.
Bảng biến thiên
Dựa vào bảng biến thiên, ta có khoảng thời gian (15; 25) ngày thì tốc độ truyền bệnh giảm.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.