Câu hỏi:
10/01/2025 6,926Người ta cần xây dựng công trình đê để ngăn nước lũ của sông. Mặt cắt của đê được thiết kế với số đo như trong hình vẽ dưới đây.
Tổng thể tích vật liệu cần dùng để xây dựng đoạn đê đó bằng bao nhiêu mét khối (làm tròn kết quả đến hàng đơn vị)? Biết rằng đoạn đê thẳng và dài 100m.
Câu hỏi trong đề: 50 bài tập Hình học không gian có lời giải !!
Quảng cáo
Trả lời:
Chia mặt cắt đoạn đê thành các hình tam giác vuông, hình chữ nhật, hình thang như hình vẽ sau.
Đoạn đê được ghép bởi bốn khối lăng trụ đứng có cùng chiều cao \(100{\rm{\;m}}\) và có đáy lần lượt là tam giác vuông \(ABC\), hình chữ nhật \(ACDI\), các hình thang vuông \(DEHI\) và \(EFGH\).
Theo giả thiết, ta có:
+ Tam giác vuông \(ABC\) có kích thước hai cạnh góc vuông là \(9\) m và \(6,5\) m.
+ Hình chữ nhật \(ACDI\) có hai kích thước là \(5\) m và \(6,5\) m.
+ Hình thang vuông \(DEHI\) có đáy lớn dài \(6,5\) m, đáy nhỏ dài \(3\) m và chiều cao \(4,5\) m.
+ Hình thang vuông \(EFGH\) có đáy lớn đài \(6\) m, đáy nhỏ dài \(1\) m và chiều cao \(3\) m.
Thể tích của khối lăng trụ đứng có đáy là tam giác vuông \(ABC\) bằng:
\({V_1} = \left( {\frac{1}{2} \cdot 9 \cdot 6,5} \right) \cdot 100 = 2925\,\,\left( {{{\rm{m}}^{\rm{3}}}} \right).\)
Thể tích của khối lăng trụ đứng có đáy là hình chữ nhật \(ACDI\) bằng:
\({V_2} = \left( {5 \cdot 6,5} \right) \cdot 100 = 3\,250\,\,\left( {{{\rm{m}}^3}} \right).\)
Thể tích của khối lăng trụ đứng có đáy là hình thang vuông \(DEHI\) bằng:
\({V_3} = \frac{1}{2}\left( {6,5 + 3} \right) \cdot 4,5 \cdot 100 = 2137,5\,\,\left( {{{\rm{m}}^3}} \right).\)
Thể tích của khối lăng trụ đứng có đáy là hình thang vuông \(DEHI\) bằng:
\({V_4} = \frac{1}{2}\left( {6 + 1} \right) \cdot 3 \cdot 100 = 1050\,\,\left( {{{\rm{m}}^3}} \right).\)
Vậy thể tích vật liệu cần dùng để xây dựng đoạn đê đó bằng:
\(V = {V_1} + {V_2} + {V_3} + {V_4} = 2925 + 3250 + 2137,5 + 1050 = 9362,5 \approx 9\,363\,\,\left( {{{\rm{m}}^3}} \right).\)
Đáp án: \(9\,363\).
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Đặt \(AB = x,\left( {x > 0} \right)\), gọi \(M\) là trung điểm \(BC\).
Ta có \[\left\{ \begin{array}{l}AM \bot BC\\A'M \bot BC\end{array} \right.\], suy ra \(\widehat {A'MA}\) là góc phẳng nhị diện của góc nhị diện \(\left[ {A,BC,A'} \right]\)\[ \Rightarrow \widehat {A'MA} = 30^\circ \].Xét \(\Delta A'AM\), có \[A'M = \frac{{AM}}{{cos30^\circ }} = \frac{{x\sqrt 3 }}{2} \cdot \frac{2}{{\sqrt 3 }} = x\].
\({S_{A'BC}} = 8 \Leftrightarrow \frac{1}{2}A'M \cdot BC = 8 \Leftrightarrow {x^2} = 16 \Rightarrow x = 4\).
Suy ra \(A'A = AM \cdot \tan 30^\circ = \frac{{4 \cdot \sqrt 3 }}{2} \cdot \frac{1}{{\sqrt 3 }} = 2\); \({S_{ABC}} = \frac{{16 \cdot \sqrt 3 }}{4} = 4\sqrt 3 \).
Vậy \({V_{ABC.A'B'C'}} = A'A \cdot {S_{ABC}} = 2 \cdot 4\sqrt 3 = 8\sqrt 3 \). Chọn A.
Lời giải
Ta có: \(AD\,{\rm{//}}\,BC \Rightarrow AD\,{\rm{//}}\,\,\left( {SBC} \right) \Rightarrow d\left( {D,\left( {SBC} \right)} \right) = d\left( {A,\left( {SBC} \right)} \right)\).
Trong mặt phẳng \(\left( {SAB} \right)\), kẻ \(AH \bot SB\) tại \(H\). (1)
Ta có: \(\left\{ {\begin{array}{*{20}{l}}{BC \bot AB}\\{BC \bot SA}\end{array} \Rightarrow BC \bot \left( {SAB} \right) \Rightarrow AH \bot BC} \right.\). (2)
Từ (1) và (2) suy ra \(AH \bot \left( {SBC} \right)\) hay \(d\left( {A,\left( {SBC} \right)} \right) = AH\).
Tam giác \(SAB\) vuông tại \(A\) có đường cao \(AH\) nên:
\(\frac{1}{{A{H^2}}} = \frac{1}{{S{A^2}}} + \frac{1}{{A{B^2}}} \Rightarrow AH = \frac{{SA \cdot AB}}{{\sqrt {S{A^2} + A{B^2}} }} = \frac{{2a \cdot a\sqrt 2 }}{{\sqrt {4{a^2} + 2{a^2}} }} = \frac{{2a\sqrt 3 }}{3}{\rm{. }}\)
Vậy \(d\left( {D,\left( {SBC} \right)} \right) = d\left( {A,\left( {SBC} \right)} \right) = AH = \frac{{2a\sqrt 3 }}{3}\).
Trong mặt phẳng \(\left( {SAD} \right)\), kẻ \(AK \bot SD\) tại \(K\). (3)
Ta có: \(\left\{ {\begin{array}{*{20}{l}}{AB \bot SA}\\{AB \bot AD}\end{array} \Rightarrow AB \bot \left( {SAD} \right) \Rightarrow AB \bot AK} \right.\).(4)
Từ (3) và (4) suy ra \(AK\) là đường vuông góc chung của hai đường thẳng chéo nhau \(AB,SD\).
Tam giác \(ACD\) vuông tại \(D\) nên \(AD = \sqrt {A{C^2} - C{D^2}} = \sqrt {3{a^2} - 2{a^2}} = a\).
Tam giác \(SAD\) vuông tại \(A\) có đường cao \(AK\) nên
\(\frac{1}{{A{K^2}}} = \frac{1}{{S{A^2}}} + \frac{1}{{A{D^2}}} \Rightarrow AK = \frac{{SA \cdot AD}}{{\sqrt {S{A^2} + A{D^2}} }} = \frac{{2a \cdot a}}{{\sqrt {4{a^2} + {a^2}} }} = \frac{{2a\sqrt 5 }}{5}{\rm{. }}\)
Vậy \(d\left( {AB,SD} \right) = AK = \frac{{2a\sqrt 5 }}{5}\).
Diện tích đáy hình chóp là: \({S_{ABCD}} = a \cdot a\sqrt 2 = {a^2}\sqrt 2 \).
Thể tích khối chóp cần tìm là: \({V_{S.ABCD}} = \frac{1}{3}SA \cdot {S_{ABCD}} = \frac{1}{3} \cdot 2a \cdot {a^2}\sqrt 2 = \frac{{2\sqrt 2 {a^3}}}{3}{\rm{ }}\)(đơn vị thể tích).
Đáp án: a) Đúng, b) Sai, c) Đúng, d) Sai.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
30 Đề thi thử thpt quốc gia môn Toán có lời giải chi tiết mới nhất (Đề số 1)
CÂU TRẮC NGHIỆM ĐÚNG SAI
(2025 mới) Đề thi ôn tập THPT môn Toán có đáp án (Đề số 1)
Đề minh họa tốt nghiệp THPT môn Toán có đáp án năm 2025 (Đề 1)
Đề minh họa tốt nghiệp THPT môn Toán có đáp án năm 2025 (Đề 2)
Đề minh họa tốt nghiệp THPT môn Toán có đáp án năm 2025 (Đề 19)
(2025 mới) Đề thi ôn tập THPT môn Toán có đáp án (Đề số 2)
45 bài tập Xác suất có lời giải