Câu hỏi:

14/01/2025 249

Cho tứ diện \(ABCD\)\(AB,AC,AD\) đôi một vuông góc với nhau. Biết rằng \(AB = AC = a,AD = a\sqrt 3 \).

a) \[AC \bot \left( {ABD} \right)\].

d) \(\left( {CD,\left( {ABD} \right)} \right) = 30^\circ \).

c) Góc nhị diện \[\left[ {A,BC,D} \right]\] có số đo bằng \[87,79^\circ \].

d) Số đo của góc nhị diện \(\left[ {C,AB,D} \right]\) bằng \(90^\circ \).

Sale Tết giảm 50% 2k7: Bộ 20 đề minh họa Toán, Lí, Hóa, Văn, Sử, Địa…. form chuẩn 2025 của Bộ giáo dục (chỉ từ 49k/cuốn).

Sách đề toán-lý-hóa Sách văn-sử-địa Tiếng anh & các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack
Cho tứ diện \(ABCD\) có \(AB,AC,AD\) đôi một vuông góc với nhau. Biết rằng \(AB = AC = a,AD = a\sqrt 3 \). (ảnh 1)

Ta có: \(\left\{ {\begin{array}{*{20}{l}}{AC \bot AB}\\{AC \bot AD}\end{array} \Rightarrow AC \bot \left( {ABD} \right)} \right.\).

Khi đó \(AD\) là hình chiếu của \(CD\) trên \(\left( {ABD} \right)\).

Ta có: \(\left( {CD,\left( {ABD} \right)} \right) = \left( {CD,AD} \right) = \widehat {CDA}\).

Tam giác \(ACD\) vuông tại \(A\) có:

\(\tan \widehat {CDA} = \frac{{AC}}{{AD}} = \frac{a}{{a\sqrt 3 }} = \frac{1}{{\sqrt 3 }} \Rightarrow \widehat {CDA} = 30^\circ \).

Vậy \(\left( {CD,\left( {ABD} \right)} \right) = \widehat {CDA} = 30^\circ \).

Gọi \(M\) là trung điểm \(BC\) thì \(AM \bot BC\) (do \(AB = AC\)).

Vì \(\left\{ {\begin{array}{*{20}{l}}{AD \bot AB}\\{AD \bot AC}\end{array}} \right. \Rightarrow AD \bot \left( {ABC} \right) \Rightarrow AD \bot BC.\)

Ta có: \(\left\{ {\begin{array}{*{20}{l}}{BC \bot AM}\\{BC \bot AD}\end{array}} \right.\)\( \Rightarrow BC \bot \left( {ADM} \right)\)\( \Rightarrow BC \bot DM{\rm{.}}\)

Khi đó: \(\left( {AM,DM} \right) = \widehat {AMD}\) là góc phẳng nhị diện của góc nhị diện \(\left[ {A,BC,D} \right]\).

Tam giác \(ABC\) vuông cân tại \(A\) nên đường cao \(AM = \frac{{a\sqrt 2 }}{2}\).

Tam giác \(ADM\) vuông tại \(A\) có: \(\tan \widehat {AMD} = \frac{{AD}}{{AM}} = \frac{{a\sqrt 3 }}{{\frac{{a\sqrt 2 }}{2}}} = \sqrt 6  \Rightarrow \widehat {AMD} \approx 67,79^\circ \).

Vì \(AB \bot AC,AB \bot AD\) nên \(\left( {AC,AD} \right) = \widehat {CAD}\) là góc phẳng nhị diện của góc nhị diện \(\left[ {C,AB,D} \right]\) và \(\widehat {CAD} = 90^\circ \).

Đáp án:       a) Đúng,      b) Đúng,     c) Sai,                    d) Đúng.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho tứ diện \(SABC\) có đáy \(ABC\) là tam giác vuông tại \(B\)\(SA\) vuông góc với mặt phẳng \(\left( {ABC} \right)\). Gọi \(M\),\(N\)lần lượt là hình chiếu vuông góc của \(A\) trên cạnh \(SB\)\(SC\). Khẳng định nào sau đây sai?

Cho tứ diện \(SABC\) có đáy \(ABC\) là tam giác vuông tại \(B\) và \(SA\) vuông góc với mặt phẳng (ảnh 1)

 

Xem đáp án » 10/01/2025 856

Câu 2:

Cho hình chóp \(S.ABCD\) có đáy là hình chữ nhật tâm \(O\), cạnh \(SA\) vuông góc với mặt phẳng đáy. Gọi \(H\) và \(K\) lần lượt là hình chiếu của \(A\) lên \(SB\) và \(SD\). Hỏi đường thẳng \(SC\) vuông góc với mặt phẳng nào trong các mặt phẳng sau đây?

Cho hình chóp \(S.ABCD\) có đáy là hình chữ nhật tâm \(O\), cạnh \(SA\) vuông góc với mặt phẳng đáy (ảnh 1)

 

Xem đáp án » 10/01/2025 637

Câu 3:

Cho hình chóp \(S.ABCD\) có đáy là hình bình hành tâm \(O\). Biết \(\widehat {SAD} = \widehat {SCD} = 90^\circ \). Số đo góc giữa hai đường thẳng \(SB\)\(AC\) bằng bao nhiêu độ?

Xem đáp án » 14/01/2025 633

Câu 4:

Cho hình lăng trụ tam giác ABC.A'B'C' có \(AA' \bot AB,AA' \bot AC\) và tất cả các cạnh đều bằng \(a\). Gọi \(M\) và \(N\) lần lượt là trung điểm của \(AA'\) và \(AC\).

a) \(\left( {A'B,C'C} \right) = \widehat {AA'B}\).

b) \(\left( {A'B,C'C} \right) = 45^\circ \).

c) \(\left( {A'C,MB} \right) = \widehat {BAN}\).

d) \(\widehat {BMN} \approx 42,6^\circ \).

Xem đáp án » 09/01/2025 447

Câu 5:

Cho hình chóp \(S.ABCD\) có đáy \(ABCD\) là hình bình hành, tam giác \(SAB\) vuông tại \(A\). Góc giữa hai đường thẳng \(SA\)\(CD\) bằng bao nhiêu?

Xem đáp án » 10/01/2025 441

Câu 6:

Cho lăng trụ đều \(ABC.A'B'C'\). Biết rằng góc nhị diện \(\left[ {A,BC,A'} \right]\) có số đo bằng \(30^\circ \), tam giác \(A'BC\) có diện tích bằng \(8\). Thể tích khối lăng trụ \(ABC.A'B'C'\) bằng

Xem đáp án » 14/01/2025 426

Câu 7:

Cho hình chóp \(S.ABCD\), đáy \(ABCD\) là hình thang vuông tại \(A,D\). Góc giữa \(SB\)\(\left( {ABCD} \right)\) bằng \(45^\circ \). Biết rằng \(SA \bot \left( {ABCD} \right)\), \(SA = 2AD = 2DC = 2a\). Khoảng cách từ \(A\) đến mặt phẳng \(\left( {SBC} \right)\) bằng

Xem đáp án » 14/01/2025 367

Bình luận


Bình luận