Câu hỏi:

14/01/2025 6,536

Cho hình chóp \(S.ABCD\) có đáy \(ABCD\) là hình chữ nhật với \(AB = 2a\), \(AD = a\). Hình chiếu của \(S\) lên mặt phẳng \(\left( {ABCD} \right)\) là trung điểm \(H\) của \(AB\)\(\widehat {SCH} = 45^\circ \).

a) \(BC \bot \left( {SAB} \right)\).

b) \(d\left( {H,\left( {SBC} \right)} \right) = \frac{{a\sqrt 6 }}{3}\).

c) Gọi \(K\) là trung điểm \(CD\). Khi đó \(CD \bot \left( {SHK} \right)\).

d) \(d\left( {H,\left( {SCD} \right)} \right) = \frac{{a\sqrt 6 }}{2}\).

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack
Cho hình chóp \(S.ABCD\) có đáy \(ABCD\) là hình chữ nhật với \(AB = 2a\), \(AD = a\). Hình chiếu của (ảnh 1)
Kẻ đường cao \(HE\) trong tam giác \(SBH\). (1)

Ta có: \(\left\{ {\begin{array}{*{20}{l}}{BC \bot AB}\\{BC \bot SH{\rm{ }}\left( {{\rm{do }}SH \bot \left( {ABCD} \right)} \right)}\end{array}} \right.\)

\( \Rightarrow BC \bot \left( {SAB} \right) \Rightarrow BC \bot HE\). (2)

Từ (1) và (2) suy ra \(HE \bot \left( {SBC} \right)\).

Suy ra \(d\left( {H,\left( {SBC} \right)} \right) = HE\).

Tam giác \(BCH\) vuông tại \(B\) có: \(CH = \sqrt {B{C^2} + B{H^2}}  = \sqrt {{a^2} + {a^2}}  = a\sqrt 2 \).

Tam giác \(SCH\) vuông tại \(H\) có: \(\tan \widehat {SCH} = \frac{{SH}}{{CH}} \Rightarrow SH = a\sqrt 2 {\rm{. }}\)

Tam giác \(SBH\) vuông tại \(H\) có đường cao \(HE\) nên \(\frac{1}{{H{E^2}}} = \frac{1}{{S{H^2}}} + \frac{1}{{B{H^2}}}\).

Suy ra \(HE = \frac{{SH \cdot BH}}{{\sqrt {S{H^2} + B{H^2}} }} = \frac{{a\sqrt 2  \cdot a}}{{\sqrt {2{a^2} + {a^2}} }} = \frac{{a\sqrt 6 }}{3}.\) Vậy \(d\left( {H,\left( {SBC} \right)} \right) = HE = \frac{{a\sqrt 6 }}{3}\).

Vì \(K\) là trung điểm \(CD\) nên \(HK\) là đường trung bình của hình chữ nhật \(ABCD\), từ đó suy ra \(HK\,{\rm{//}}\,BC\,{\rm{//}}\,AD \Rightarrow HK \bot CD\).

Ta có: \(\left\{ {\begin{array}{*{20}{l}}{CD \bot HK}\\{CD \bot SH}\end{array} \Rightarrow CD \bot \left( {SHK} \right)} \right.\).

Kẻ đường cao \(HI\) của tam giác \(SHK\).

Ta có: \(\left\{ {\begin{array}{*{20}{l}}{HI \bot SK}\\{HI \bot CD\,\,\,\left( {{\rm{do }}CD \bot \left( {SHK} \right),HI \subset \left( {SHK} \right)} \right)}\end{array} \Rightarrow HI \bot \left( {SCD} \right)} \right.\).

Tam giác \(SHK\) vuông tại \(H\) có đường cao \(HI\) nên

\(\frac{1}{{H{I^2}}} = \frac{1}{{S{H^2}}} + \frac{1}{{H{K^2}}} \Rightarrow HI = \frac{{SH \cdot HK}}{{\sqrt {S{H^2} + H{K^2}} }} = \frac{{a\sqrt 2  \cdot a}}{{\sqrt {2{a^2} + {a^2}} }} = \frac{{a\sqrt 6 }}{3}.\)

Vậy \(d\left( {H,\left( {SCD} \right)} \right) = HI = \frac{{a\sqrt 6 }}{3}\).

Đáp án:       a) Đúng,      b) Đúng,     c) Đúng,      d) Sai.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Cho lăng trụ đều \(ABC.A'B'C'\). Biết rằng góc nhị diện \(\left[ {A,BC,A'} \right]\) có số đo bằng \(30^\circ \), tam giác  (ảnh 1)

Đặt \(AB = x,\left( {x > 0} \right)\), gọi \(M\) là trung điểm \(BC\).

Ta có \[\left\{ \begin{array}{l}AM \bot BC\\A'M \bot BC\end{array} \right.\], suy ra \(\widehat {A'MA}\) là góc phẳng nhị diện của góc nhị diện \(\left[ {A,BC,A'} \right]\)\[ \Rightarrow \widehat {A'MA} = 30^\circ \].

Xét \(\Delta A'AM\), có \[A'M = \frac{{AM}}{{cos30^\circ }} = \frac{{x\sqrt 3 }}{2} \cdot \frac{2}{{\sqrt 3 }} = x\].

\({S_{A'BC}} = 8 \Leftrightarrow \frac{1}{2}A'M \cdot BC = 8 \Leftrightarrow {x^2} = 16 \Rightarrow x = 4\).

Suy ra \(A'A = AM \cdot \tan 30^\circ  = \frac{{4 \cdot \sqrt 3 }}{2} \cdot \frac{1}{{\sqrt 3 }} = 2\); \({S_{ABC}} = \frac{{16 \cdot \sqrt 3 }}{4} = 4\sqrt 3 \).

Vậy \({V_{ABC.A'B'C'}} = A'A \cdot {S_{ABC}} = 2 \cdot 4\sqrt 3  = 8\sqrt 3 \). Chọn A.

Lời giải

Ta có: \(AD\,{\rm{//}}\,BC \Rightarrow AD\,{\rm{//}}\,\,\left( {SBC} \right) \Rightarrow d\left( {D,\left( {SBC} \right)} \right) = d\left( {A,\left( {SBC} \right)} \right)\).

Trong mặt phẳng \(\left( {SAB} \right)\), kẻ \(AH \bot SB\) tại \(H\). (1)

Ta có: \(\left\{ {\begin{array}{*{20}{l}}{BC \bot AB}\\{BC \bot SA}\end{array} \Rightarrow BC \bot \left( {SAB} \right) \Rightarrow AH \bot BC} \right.\). (2)

Từ (1) và (2) suy ra \(AH \bot \left( {SBC} \right)\) hay \(d\left( {A,\left( {SBC} \right)} \right) = AH\).

Tam giác \(SAB\) vuông tại \(A\) có đường cao \(AH\) nên:

Cho hình chóp \(S.ABCD\) có đáy \(ABCD\) là hình chữ nhật với \(AB = a\sqrt 2 \), \(AC = a\sqrt 3 \). (ảnh 1)

\(\frac{1}{{A{H^2}}} = \frac{1}{{S{A^2}}} + \frac{1}{{A{B^2}}} \Rightarrow AH = \frac{{SA \cdot AB}}{{\sqrt {S{A^2} + A{B^2}} }} = \frac{{2a \cdot a\sqrt 2 }}{{\sqrt {4{a^2} + 2{a^2}} }} = \frac{{2a\sqrt 3 }}{3}{\rm{. }}\)

Vậy \(d\left( {D,\left( {SBC} \right)} \right) = d\left( {A,\left( {SBC} \right)} \right) = AH = \frac{{2a\sqrt 3 }}{3}\).

Trong mặt phẳng \(\left( {SAD} \right)\), kẻ \(AK \bot SD\) tại \(K\). (3)

Ta có: \(\left\{ {\begin{array}{*{20}{l}}{AB \bot SA}\\{AB \bot AD}\end{array} \Rightarrow AB \bot \left( {SAD} \right) \Rightarrow AB \bot AK} \right.\).(4)

Từ (3) và (4) suy ra \(AK\) là đường vuông góc chung của hai đường thẳng chéo nhau \(AB,SD\).

Tam giác \(ACD\) vuông tại \(D\) nên \(AD = \sqrt {A{C^2} - C{D^2}} = \sqrt {3{a^2} - 2{a^2}} = a\).

Tam giác \(SAD\) vuông tại \(A\) có đường cao \(AK\) nên

\(\frac{1}{{A{K^2}}} = \frac{1}{{S{A^2}}} + \frac{1}{{A{D^2}}} \Rightarrow AK = \frac{{SA \cdot AD}}{{\sqrt {S{A^2} + A{D^2}} }} = \frac{{2a \cdot a}}{{\sqrt {4{a^2} + {a^2}} }} = \frac{{2a\sqrt 5 }}{5}{\rm{. }}\)

Vậy \(d\left( {AB,SD} \right) = AK = \frac{{2a\sqrt 5 }}{5}\).

Diện tích đáy hình chóp là: \({S_{ABCD}} = a \cdot a\sqrt 2 = {a^2}\sqrt 2 \).

Thể tích khối chóp cần tìm là: \({V_{S.ABCD}} = \frac{1}{3}SA \cdot {S_{ABCD}} = \frac{1}{3} \cdot 2a \cdot {a^2}\sqrt 2 = \frac{{2\sqrt 2 {a^3}}}{3}{\rm{ }}\)(đơn vị thể tích).

Đáp án:       a) Đúng,      b) Sai,                    c) Đúng,      d) Sai.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay