Câu hỏi:

16/01/2025 1,330

Cho tứ diện đều \(ABCD\) có các cạnh bằng \(a\). Gọi \(M,\,N\) lần lượt là trung điểm các cạnh \(AB\) và \(CD\). Tính tích vô hướng \(\overrightarrow {CM}  \cdot \overrightarrow {AN} .\)

 

Đáp án chính xác

Sách mới 2k7: Bộ 20 đề minh họa Toán, Lí, Hóa, Văn, Sử, Địa…. form chuẩn 2025 của Bộ giáo dục (chỉ từ 49k/cuốn).

Đề toán-lý-hóa Đề văn-sử-địa Tiếng anh & các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Ta có: \[\overrightarrow {CM} \cdot \overrightarrow {AN} = \left( {\overrightarrow {AM} - \overrightarrow {AC} } \right) \cdot \frac{1}{2}\left( {\overrightarrow {AC} + \overrightarrow {AD} } \right)\]

\( = \frac{1}{2}\left( {\overrightarrow {AM} \cdot \overrightarrow {AC} - {{\overrightarrow {AC} }^2} + \overrightarrow {AM} \cdot \overrightarrow {AD} - \overrightarrow {AC} \cdot \overrightarrow {AD} } \right)\)\( = \frac{1}{2}\left( {\frac{{{a^2}}}{4} - {a^2} + \frac{{{a^2}}}{4} - \frac{{{a^2}}}{2}} \right) = \frac{{ - 1}}{2}{a^2}\). Chọn C.

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho hình chóp tứ giác đều \(S.ABCD\) có cạnh đáy bằng \(a\sqrt 2 ,\) chiều cao bằng \(2a\) và \(O\) là tâm của đáy. Bằng cách thiết lập hệ trục tọa độ \(Oxyz\) như hình vẽ bên, ta tính được khoảng cách từ điểm \(C\) đến mặt phẳng \(\left( {SAB} \right)\) bằng

Cho hình chóp tứ giác đều \(S.ABCD\) có cạnh đáy bằng \(a\sqrt 2 ,\) chiều cao bằng \(2a\) và \(O\) là tâm của đáy. (ảnh 1)

Xem đáp án » 16/01/2025 5,217

Câu 2:

Trong không gian với một hệ trục tọa độ cho trước (đơn vị tính bằng mét). Bạn Huyền quan sát và phát hiện một con chim đang bay với tốc độ và hướng không đổi từ điểm \(A\left( {20;40;30} \right)\) đến điểm \(B\left( {40;50;50} \right)\) trong vòng 4 phút. Nếu con chim bay tiếp tục giữ nguyên vận tốc và hướng bay thì sau 2 phút con chim ở vị trí \(C\left( {a;b;c} \right)\). Tổng \(a + b + c\) bằng bao nhiêu?

Trong không gian với một hệ trục tọa độ cho trước (đơn vị tính bằng mét). Bạn Huyền quan sát và phát hiện một con chim (ảnh 1)

Xem đáp án » 16/01/2025 3,292

Câu 3:

Trong không gian \[Oxyz\], cho đường thẳng \[\Delta :\frac{{x - 2024}}{2} = \frac{y}{1} = \frac{{z + 2025}}{{ - 2}}\] và mặt phẳng \[\left( P \right):2x + 2y - z + 1 = 0\]. Xét các vectơ \[\overrightarrow u  = \left( {2;1; - 2} \right)\], \[\overrightarrow n  = \left( {2;2; - 1} \right)\].

a) \[\overrightarrow u \] là một vectơ chỉ phương của đường thẳng \[\Delta \].

b) \[\overrightarrow n \] là một vectơ pháp tuyến của mặt phẳng \[\left( P \right)\].

c) \[\cos \left( {\Delta ,\left( P \right)} \right) = \frac{8}{9}\].

d) Góc giữa đường thẳng \[\Delta \] và mặt phẳng \[\left( P \right)\] xấp xỉ bằng \[63^\circ \].

Xem đáp án » 16/01/2025 1,809

Câu 4:

Trong không gian \(Oxyz\), phương trình chính tắc của đường thẳng \(AB\) với \(A\left( {1;1;2} \right)\) và \(B\left( { - 4;3; - 2} \right)\) là:

Xem đáp án » 16/01/2025 1,745

Câu 5:

Trong không gian \(Oxyz\), mặt phẳng nào sau đây đi qua gốc tọa độ?

Xem đáp án » 16/01/2025 1,473

Câu 6:

Trong không gian \(Oxyz\), mặt phẳng cắt ba trục tọa độ tại ba điểm \(D\left( {3;0;0} \right)\), \(E\left( {0; - 2;0} \right),\) \(G\left( {0;0; - 7} \right)\) có phương trình chính tắc là:

Xem đáp án » 16/01/2025 1,036