Một siêu thị thống kê số tiền (đơn vị: chục nghìn đồng) mà 44 khách hàng mua hàng ở siêu thị đó trong một ngày. Số liệu được ghi lại trong bảng.
Nhóm |
\(\left[ {40;45} \right)\) |
\(\left[ {45;50} \right)\) |
\(\left[ {50;55} \right)\) |
\(\left[ {55;60} \right)\) |
\(\left[ {60;65} \right)\) |
\[\left[ {65;70} \right)\] |
Tần số |
4 |
14 |
8 |
10 |
6 |
2 |
Phương sai của mẫu số liệu ghép nhóm trên (làm tròn đến hàng đơn vị) là
Câu hỏi trong đề: 35 bài tập Thống kê có lời giải !!
Quảng cáo
Trả lời:

Ta có bảng sau:
Nhóm |
\(\left[ {40;45} \right)\) |
\(\left[ {45;50} \right)\) |
\(\left[ {50;55} \right)\) |
\(\left[ {55;60} \right)\) |
\(\left[ {60;65} \right)\) |
\[\left[ {65;70} \right)\] |
|
Tần số \(\left( n \right)\) |
4 |
14 |
8 |
10 |
6 |
2 |
44 |
Giá trị đại diện |
42,5 |
47,5 |
52,5 |
57,5 |
62,5 |
67,5 |
|
\({n_i}{c_i}\) |
170 |
665 |
420 |
575 |
375 |
135 |
2340 |
\({n_i}c_i^2\) |
\(4 \cdot 42,{5^2}\) |
\(14 \cdot 47,{5^2}\) |
\(8 \cdot 52,{5^2}\) |
\(10 \cdot 57,{5^2}\) |
\(6 \cdot 62,{5^2}\) |
\(2 \cdot 67,{5^2}\) |
126475 |
Phương sai của mẫu số liệu trên là: \({s^2} = \frac{1}{n}\sum {{n_i}} c_i^2 - {\left( {\frac{{\sum {{n_i}} {c_i}}}{n}} \right)^2} \approx 46.\) Chọn B.
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
- 20 Bộ đề, Tổng ôn, sổ tay môn Toán (có đáp án chi tiết) ( 55.000₫ )
- 500 Bài tập tổng ôn môn Toán (Form 2025) ( 38.500₫ )
- Bộ đề thi tốt nghiệp 2025 các môn Toán, Lí, Hóa, Văn, Anh, Sinh, Sử, Địa, KTPL (có đáp án chi tiết) ( 36.000₫ )
- Tổng ôn lớp 12 môn Toán, Lí, Hóa, Văn, Anh, Sinh Sử, Địa, KTPL (Form 2025) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Nhóm |
\(\left[ {30;40} \right)\) |
\(\left[ {40;50} \right)\) |
\(\left[ {50;60} \right)\) |
\(\left[ {60;70} \right)\) |
\(\left[ {70;80} \right)\) |
\(\left[ {80;90} \right)\) |
Tần số |
2 |
10 |
16 |
8 |
2 |
2 |
Tần số tích luỹ |
2 |
12 |
28 |
36 |
38 |
40 |
Khoảng biến thiên của mẫu số liệu là \(90 - 30 = 60\).
Vì độ dài của các nhóm là bằng nhau và tần số lớn nhất của mẫu số liệu là 16 nên nhóm chứa mốt là nhóm \(\left[ {50;60} \right)\).
Nhóm \(\left[ {40;50} \right)\) là nhóm đầu tiên có tần số tích luỹ lớn hơn hoặc bằng \(\frac{n}{4} = \frac{{40}}{4} = 10\) nên chứa tứ phân vị thứ nhất.
Ta có: \({Q_1} = 40 + \frac{{10 - 2}}{{10}} \cdot 10 = 48\).
Nhóm \(\left[ {60;70} \right)\) là nhóm đầu tiên có tần số tích luỹ lớn hơn hoặc bằng \(\frac{{3n}}{4} = 30\) nên chứa tứ phân vị thứ ba.
Ta có: \({Q_3} = 60 + \frac{{30 - 28}}{8} \cdot 10 = 62,5\).
Suy ra khoảng tứ phân vị của mẫu số liệu ghép nhóm trên là: \(\Delta Q = {Q_3} - {Q_1} = 14,5\).
Đáp án: a) Sai, b) Đúng, c) Đúng, d) Đúng.
Lời giải
Ta có bảng sau:
Tuổi thọ |
\(\left[ {14;15} \right)\) |
\(\left[ {15;16} \right)\) |
\(\left[ {16;17} \right)\) |
\(\left[ {17;18} \right)\) |
\(\left[ {18;19} \right)\) |
Số con hổ |
1 |
3 |
8 |
6 |
2 |
Tần số tích luỹ |
1 |
4 |
12 |
18 |
20 |
Nhóm đầu tiên có tần số tích luỹ lớn hơn hoặc bằng \(\frac{n}{4} = \frac{{20}}{4} = 5\) là nhóm \([16;17)\). Chọn C.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.