Câu hỏi:

17/01/2025 556 Lưu

Một siêu thị thống kê số tiền (đơn vị: chục nghìn đồng) mà 44 khách hàng mua hàng ở siêu thị đó trong một ngày. Số liệu được ghi lại trong bảng.

Nhóm

\(\left[ {40;45} \right)\)

\(\left[ {45;50} \right)\)

\(\left[ {50;55} \right)\)

\(\left[ {55;60} \right)\)

\(\left[ {60;65} \right)\)

\[\left[ {65;70} \right)\]

Tần số

4

14

8

10

6

2

Phương sai của mẫu số liệu ghép nhóm trên (làm tròn đến hàng đơn vị) là

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Ta có bảng sau:

Nhóm

\(\left[ {40;45} \right)\)

\(\left[ {45;50} \right)\)

\(\left[ {50;55} \right)\)

\(\left[ {55;60} \right)\)

\(\left[ {60;65} \right)\)

\[\left[ {65;70} \right)\]

 

Tần số \(\left( n \right)\)

4

14

8

10

6

2

44

Giá trị đại diện

42,5

47,5

52,5

57,5

62,5

67,5

 

\({n_i}{c_i}\)

170

665

420

575

375

135

2340

\({n_i}c_i^2\)

\(4 \cdot 42,{5^2}\)

\(14 \cdot 47,{5^2}\)

\(8 \cdot 52,{5^2}\)

\(10 \cdot 57,{5^2}\)

\(6 \cdot 62,{5^2}\)

\(2 \cdot 67,{5^2}\)

126475

Phương sai của mẫu số liệu trên là: \({s^2} = \frac{1}{n}\sum {{n_i}} c_i^2 - {\left( {\frac{{\sum {{n_i}} {c_i}}}{n}} \right)^2} \approx 46.\) Chọn B.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Nhóm

\(\left[ {30;40} \right)\)

\(\left[ {40;50} \right)\)

\(\left[ {50;60} \right)\)

\(\left[ {60;70} \right)\)

\(\left[ {70;80} \right)\)

\(\left[ {80;90} \right)\)

Tần số

2

10

16

8

2

2

Tần số tích luỹ

2

12

28

36

38

40

Khoảng biến thiên của mẫu số liệu là \(90 - 30 = 60\).

Vì độ dài của các nhóm là bằng nhau và tần số lớn nhất của mẫu số liệu là 16 nên nhóm chứa mốt là nhóm \(\left[ {50;60} \right)\).

Nhóm \(\left[ {40;50} \right)\) là nhóm đầu tiên có tần số tích luỹ lớn hơn hoặc bằng \(\frac{n}{4} = \frac{{40}}{4} = 10\) nên chứa tứ phân vị thứ nhất.

Ta có: \({Q_1} = 40 + \frac{{10 - 2}}{{10}} \cdot 10 = 48\).

Nhóm \(\left[ {60;70} \right)\) là nhóm đầu tiên có tần số tích luỹ lớn hơn hoặc bằng \(\frac{{3n}}{4} = 30\) nên chứa tứ phân vị thứ ba.

Ta có: \({Q_3} = 60 + \frac{{30 - 28}}{8} \cdot 10 = 62,5\).

Suy ra khoảng tứ phân vị của mẫu số liệu ghép nhóm trên là: \(\Delta Q = {Q_3} - {Q_1} = 14,5\).

Đáp án:       a) Sai,                    b) Đúng,     c) Đúng,      d) Đúng.

Lời giải

Ta có bảng sau:

Tuổi thọ

\(\left[ {14;15} \right)\)

\(\left[ {15;16} \right)\)

\(\left[ {16;17} \right)\)

\(\left[ {17;18} \right)\)

\(\left[ {18;19} \right)\)

Số con hổ

1

3

8

6

2

Tần số tích luỹ

1

4

12

18

20

Nhóm đầu tiên có tần số tích luỹ lớn hơn hoặc bằng \(\frac{n}{4} = \frac{{20}}{4} = 5\) là nhóm \([16;17)\). Chọn C.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP