Câu hỏi:

18/01/2025 164

Nồng độ thuốc \(C\left( t \right)\) tính theo mg/cm3 trong máu của bệnh nhân được tính bởi \(C\left( t \right) = \frac{{0,05t}}{{{t^2} + t + 1}}\), trong đó \(t\) là thời gian tính theo giờ kể từ khi tiêm cho bệnh nhân.

a) Hàm số \(C\left( t \right)\) có đạo hàm \(C'\left( t \right) = \frac{{1 - {t^2}}}{{20{{\left( {{t^2} + t + 1} \right)}^2}}},t \ge 0\).

b) Sau khi tiêm, nồng độ thuốc trong máu của bệnh nhân giảm dần theo thời gian.

c) Nồng độ thuốc trong máu lớn nhất ở thời điểm 1 giờ sau khi tiêm.

d) Có thời điểm nồng độ trong máu của bệnh nhân đạt 0,02 mg/cm3.

Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025).

Tải ngay

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Ta có \(C'\left( t \right) = 0,05 \cdot \frac{{{t^2} + t + 1 - t\left( {2t + 1} \right)}}{{{{\left( {{t^2} + t + 1} \right)}^2}}} = \frac{{1 - {t^2}}}{{20{{\left( {{t^2} + t + 1} \right)}^2}}},t \ge 0\).

Bảng biến thiên

Nồng độ thuốc \(C\left( t \right)\) tính theo mg/cm3 trong máu của bệnh nhân được tính bởi (ảnh 1)

Từ bảng biến thiên, suy ra a) và c) đúng; b) sai.

Vì giá trị lớn nhất của \(C\left( t \right)\)\(\frac{1}{{60}} \approx 0,01666... < 0,02\) nên d) sai.

Đáp án:       a) Đúng,                b) Sai,                   c) Đúng,      d) Sai.

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Khi sử dụng phần mềm mô phỏng để thiết kế một chậu cây, người ta quay hình phẳng giới hạn bởi đồ thị hàm số \(y = \sqrt x  + 2\), trục hoành và hai đường thẳng \(x = 0,x = 4\) quanh trục hoành. Biết đơn vị trên các trục tọa độ là decimét. Thể tích của chậu cây (làm tròn kết quả đến hàng phần mười) bằng bao nhiêu decimét khối?

Xem đáp án » 18/01/2025 4,291

Câu 2:

Một hộp chứa 4 viên bi xanh, 3 viên bi đỏ và 1 viên bi vàng. Các viên bi có cùng kích thước và khối lượng. Bạn Hà lấy ra ngẫu nhiên 1 viên bi từ hộp. Xác suất viên bi lấy ra không có màu vàng, biết rằng nó không có màu đỏ là

Xem đáp án » 18/01/2025 3,746

Câu 3:

Cho hàm số \(y = f\left( x \right)\) là một nguyên hàm của hàm số \(y = {x^3}\). Phát biểu nào sau đây đúng?

Xem đáp án » 18/01/2025 2,502

Câu 4:

Trong không gian \(Oxyz\), cho hai điểm \(A\left( {2; - 1; - 5} \right)\), \(B\left( { - 4;2;1} \right)\). Xét \(M\) là điểm thay đổi thỏa mãn điều kiện \(\left| {\overrightarrow {MA} + 2\overrightarrow {MB} } \right| = 9\). Độ dài đoạn thẳng \(OM\) lớn nhất bằng bao nhiêu (làm tròn kết quả đến hàng phần trăm).

Xem đáp án » 18/01/2025 2,047

Câu 5:

Đạo hàm \(f'\left( x \right)\) của hàm số \(f\left( x \right)\) là một hàm số bậc hai và hàm số \(y = f'\left( x \right)\) có đồ thị như hình bên. Biết rằng hàm số \(f\left( x \right)\) có giá trị cực đại là 2 và giá trị cực tiểu là \( - 2\). Tìm giá trị của \(f\left( 2 \right)\).

Đạo hàm \(f'\left( x \right)\) của hàm số \(f\left( x \right)\) là một hàm số bậc hai và hàm số \(y = f'\left( x \right)\) (ảnh 1)

Xem đáp án » 18/01/2025 1,962

Câu 6:

Trong không gian với một hệ trục tọa độ cho trước (đơn vị đo lấy theo kilômét), một chiếc máy bay đang di chuyển với hướng bay không đổi từ điểm \(\left( { - 50;30;10} \right)\) đến vị trí hạ cánh là \(\left( {2;3;0} \right)\). Hỏi đường bay của máy bay hợp với mặt đất một góc bao nhiêu độ (làm tròn kết quả đến hàng phần trăm)?

Trong không gian với một hệ trục tọa độ cho trước (đơn vị đo lấy theo kilômét), một chiếc máy bay đang di chuyển với hướng bay (ảnh 1)

Xem đáp án » 18/01/2025 1,774

Câu 7:

Cho hai hàm số \(f\left( x \right) = {e^x}\) và \(g\left( x \right) = 2{e^x} - 3\).

a) \(\int\limits_0^{\ln 2} {g\left( x \right){\rm{d}}x = 2 - 3\ln 2} \).

b) \(2\int\limits_0^2 {f\left( x \right){\rm{d}}x}  = 3 + \int\limits_0^2 {g\left( x \right){\rm{d}}x} \).

c) \(\int\limits_2^7 {\left[ {2f\left( x \right) - g\left( x \right)} \right]} \,{\rm{d}}x =  - 15\).

d) Nếu \(\int\limits_0^1 {f\left( x \right)g\left( x \right){\rm{d}}x}  = a \cdot {e^2} + b \cdot e + c\) (với \(a,b,c\) là các số nguyên) thì \(a + b + c = 0\).

Xem đáp án » 18/01/2025 1,762
Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Siêu tiết kiệm - Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua