Câu hỏi:

19/01/2025 10,364

Anh Hưng gửi tiết kiệm khoản tiền 700 triệu đồng vào một ngân hàng với lãi suất 7%/năm theo hình thức lãi kép kì hạn 12 tháng. Tính thời gian tối thiểu gửi tiết kiệm để anh Hưng thu được ít nhất 1 tỉ đồng (cả vốn lẫn lãi). Cho biết công thức lãi kép là \(T = A \cdot {\left( {1 + r} \right)^n}\), trong đó \(A\) là tiền vốn, \(T\) là tiền vốn và lãi nhận được sau \(n\) năm, \(r\) là lãi suất/năm.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Ta có \(1000 = 700 \cdot {\left( {1 + 7\% } \right)^n}\)\( \Leftrightarrow 1,{07^n} = \frac{{10}}{7}\)\( \Leftrightarrow n = {\log _{1,07}}\frac{{10}}{7} \approx 5,27\).

Vậy thời gian tối thiểu gửi tiết kiệm để anh Hưng thu được ít nhất 1 tỉ đồng là 6 năm.

Đáp án: \(6\).

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Gọi \(f\left( x \right)\) là lợi nhuận mà lái xe có thể thu về khi chở \(x\) (người) \(\left( {x \in {\mathbb{N}^*}} \right)\) trong chuyến xe đó.

Khi đó: \(f\left( x \right) = \frac{1}{2}x{\left( {40 - x} \right)^2}\), với \(0 < x \le 16\).

Ta có: \(f'\left( x \right) = \frac{1}{2}\left[ {{{\left( {40 - x} \right)}^2} - 2x\left( {40 - x} \right)} \right] = \frac{1}{2}\left( {40 - x} \right)\left( {40 - 3x} \right)\).

Với \(0 < x \le 16\) thì \(f'\left( x \right) = 0 \Leftrightarrow x = \frac{{40}}{3}\).

\(13 < \frac{{40}}{3} < 14\) nên ta có bảng biến thiên như sau:

Một xe ô tô chở khách du lịch có sức chứa tối đa là \[16\] hành khách. Trong một khu du lịch, một đoàn khách gồm (ảnh 1)

Với \(f\left( {13} \right) = 4738,5,\,\,f\left( {14} \right) = 4732\).

Căn cứ vào bảng biến thiên ta có \[\mathop {\max }\limits_{\left( {0;16} \right]} f\left( x \right) = 4738,5\] (nghìn đồng).

Vậy người lái xe đó có thể thu được nhiều nhất khoảng 4,74 triệu đồng từ một chuyến chở khách.

Đáp án: \(4,74\).

Lời giải

Xét các biến cố: \(A\): “Chọn được bệnh nhân thường xuyên bị stress”;

\(B\): “Chọn được bệnh nhân bị đau dạ dày”.

Khi đó, \(P\left( A \right) = 0,3;P\left( B \right) = 0,4;P\left( {B\mid A} \right) = 0,8\).

Suy ra xác suất chọn được bệnh nhân thường xuyên bị stress vừa bị đau dạ dày là

\(P\left( {A \cap B} \right) = P\left( A \right) \cdot P\left( {B\mid A} \right) = 0,3 \cdot 0,8 = 0,24\);

Xác suất chọn được bệnh nhân thường xuyên bị stress, biết bệnh nhân đó bị đau dạ dày, là \(P\left( {A|B} \right) = \frac{{P\left( {A \cap B} \right)}}{{P\left( B \right)}} = \frac{{0,24}}{{0,4}} = 0,6\).

Đáp án:       a) Đúng,      b) Đúng,     c) Đúng,      d) Đúng.

Câu 5

Biết rằng \(\int\limits_0^1 {\frac{{2{e^{2x}} + 3}}{{{e^x}}}} \,{\rm{d}}x = \frac{{m \cdot {e^2} + n \cdot e + p}}{e}\) (với \(m,n,p \in \mathbb{Z}\)). Khi đó \(m + 2n - p\) bằng

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

Cho tứ diện \(ABCD\). Gọi \(M,N\) lần lượt là trung điểm của \(BC,CD\)\(G\) là trọng tâm của tam giác \(BCD\). Phát biểu nào sau đây sai?

Cho tứ diện \(ABCD\). Gọi \(M,N\) lần lượt là trung điểm của \(BC,CD\) và \(G\) là trọng tâm của tam giác \(BCD\). Phát biểu nào sau đây sai? (ảnh 1)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay