Câu hỏi:

19/01/2025 59,761

Một xe ô tô chở khách du lịch có sức chứa tối đa là \[16\] hành khách. Trong một khu du lịch, một đoàn khách gồm \[22\] người đang đi bộ và muốn thuê xe về khách sạn. Lái xe đưa ra thỏa thuận với đoàn khách du lịch như sau: Nếu một chuyến xe chở \(x\) (người) thì giá tiền cho mỗi người là \(\frac{{{{\left( {40 - x} \right)}^2}}}{2}\) (nghìn đồng). Với thoả thuận như trên thì lái xe có thể thu được nhiều nhất bao nhiêu triệu đồng từ một chuyến chở khách (làm tròn kết quả đến hàng phần trăm)?

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Gọi \(f\left( x \right)\) là lợi nhuận mà lái xe có thể thu về khi chở \(x\) (người) \(\left( {x \in {\mathbb{N}^*}} \right)\) trong chuyến xe đó.

Khi đó: \(f\left( x \right) = \frac{1}{2}x{\left( {40 - x} \right)^2}\), với \(0 < x \le 16\).

Ta có: \(f'\left( x \right) = \frac{1}{2}\left[ {{{\left( {40 - x} \right)}^2} - 2x\left( {40 - x} \right)} \right] = \frac{1}{2}\left( {40 - x} \right)\left( {40 - 3x} \right)\).

Với \(0 < x \le 16\) thì \(f'\left( x \right) = 0 \Leftrightarrow x = \frac{{40}}{3}\).

\(13 < \frac{{40}}{3} < 14\) nên ta có bảng biến thiên như sau:

Một xe ô tô chở khách du lịch có sức chứa tối đa là \[16\] hành khách. Trong một khu du lịch, một đoàn khách gồm (ảnh 1)

Với \(f\left( {13} \right) = 4738,5,\,\,f\left( {14} \right) = 4732\).

Căn cứ vào bảng biến thiên ta có \[\mathop {\max }\limits_{\left( {0;16} \right]} f\left( x \right) = 4738,5\] (nghìn đồng).

Vậy người lái xe đó có thể thu được nhiều nhất khoảng 4,74 triệu đồng từ một chuyến chở khách.

Đáp án: \(4,74\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Xét các biến cố: \(A\): “Chọn được bệnh nhân thường xuyên bị stress”;

\(B\): “Chọn được bệnh nhân bị đau dạ dày”.

Khi đó, \(P\left( A \right) = 0,3;P\left( B \right) = 0,4;P\left( {B\mid A} \right) = 0,8\).

Suy ra xác suất chọn được bệnh nhân thường xuyên bị stress vừa bị đau dạ dày là

\(P\left( {A \cap B} \right) = P\left( A \right) \cdot P\left( {B\mid A} \right) = 0,3 \cdot 0,8 = 0,24\);

Xác suất chọn được bệnh nhân thường xuyên bị stress, biết bệnh nhân đó bị đau dạ dày, là \(P\left( {A|B} \right) = \frac{{P\left( {A \cap B} \right)}}{{P\left( B \right)}} = \frac{{0,24}}{{0,4}} = 0,6\).

Đáp án:       a) Đúng,      b) Đúng,     c) Đúng,      d) Đúng.

Lời giải

Ta có: \(\overrightarrow {AB} = \left( {2\,;\, - 2\,;\,0} \right)\), \(\overrightarrow {AC} = \left( {1\,;\, - 3\,;\, - 4} \right)\)\(\left[ {\overrightarrow {AB} \,,\overrightarrow {AC} } \right] = \left( {8\,;\,8\,;\, - \,4} \right)\).

Suy ra mặt phẳng \(\left( P \right)\) có một vectơ pháp tuyến là \(\overrightarrow {{n_1}} = \left( {2\,;\,\,2\,;\, - 1} \right)\).

Mặt phẳng \(\left( {Oxy} \right)\) có một vectơ pháp tuyến là \(\overrightarrow {{n_2}} = \left( {0\,;\,\,0\,;\,1} \right)\).

Khi đó, \(\cos \left( {\left( P \right)\,,\,\left( {Oxy} \right)} \right) = \frac{{\left| {\overrightarrow {{n_1}} \, \cdot \,\,\overrightarrow {{n_2}} } \right|}}{{\left| {\overrightarrow {{n_1}} } \right|\,\, \cdot \,\left| {\overrightarrow {{n_2}} } \right|}} = \frac{{\left| {2\, \cdot 0 + 2\, \cdot \,0 + \left( { - \,1} \right)\, \cdot 1} \right|}}{{\sqrt {{2^2} + {2^2} + {{\left( { - \,1} \right)}^2}} \, \cdot \sqrt {{0^2} + {0^2} + {1^2}} }} = \frac{1}{3}.\)

Vậy góc giữa hai mặt phẳng \(\left( P \right)\)\(\left( {Oxy} \right)\) bằng khoảng \(71^\circ \).

Đáp án: \(71\).

Câu 5

Cho tứ diện \(ABCD\). Gọi \(M,N\) lần lượt là trung điểm của \(BC,CD\)\(G\) là trọng tâm của tam giác \(BCD\). Phát biểu nào sau đây sai?

Cho tứ diện \(ABCD\). Gọi \(M,N\) lần lượt là trung điểm của \(BC,CD\) và \(G\) là trọng tâm của tam giác \(BCD\). Phát biểu nào sau đây sai? (ảnh 1)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

Biết rằng \(\int\limits_0^1 {\frac{{2{e^{2x}} + 3}}{{{e^x}}}} \,{\rm{d}}x = \frac{{m \cdot {e^2} + n \cdot e + p}}{e}\) (với \(m,n,p \in \mathbb{Z}\)). Khi đó \(m + 2n - p\) bằng

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP