Cho hình chữ nhật \(ABCD\) có hai đỉnh di động trên đồ thị hàm số \(y = 9 - {x^2}\) trên khoảng \(\left( { - 3;3} \right)\), hai đỉnh còn lại nằm trên trục hoành (tham khảo hình vẽ). Tìm diện tích lớn nhất của hình chữ nhật \(ABCD\) (làm tròn kết quả đến hàng phần mười).
Cho hình chữ nhật \(ABCD\) có hai đỉnh di động trên đồ thị hàm số \(y = 9 - {x^2}\) trên khoảng \(\left( { - 3;3} \right)\), hai đỉnh còn lại nằm trên trục hoành (tham khảo hình vẽ). Tìm diện tích lớn nhất của hình chữ nhật \(ABCD\) (làm tròn kết quả đến hàng phần mười).
Câu hỏi trong đề: Đề thi ôn tốt nghiệp THPT Toán có lời giải !!
Quảng cáo
Trả lời:
Kí hiệu \(x\) là hoành độ của điểm \(B\) \(\left( {0 < x < 3} \right)\).
Ta có \(AB = 2x,BC = 9 - {x^2}\).
Từ đó, diện tích hình chữ nhật \(ABCD\) là \(S\left( x \right) = 18x - 2{x^3},0 < x < 3\).
Ta có \(S'\left( x \right) = 18 - 6{x^2}\), \(S'\left( x \right) = 0 \Leftrightarrow {x^2} = 3 \Leftrightarrow x = \sqrt 3 \) (do \(x > 0\)). Bảng biến thiên:

Từ đó \(\mathop {\max }\limits_{\left( {0;3} \right)} S\left( x \right) = S\left( {\sqrt 3 } \right) = 12\sqrt 3 \approx 20,8\).
Đáp án: \(20,8\).
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
- 20 đề thi tốt nghiệp môn Toán (có đáp án chi tiết) ( 38.500₫ )
- 500 Bài tập tổng ôn môn Toán (Form 2025) ( 38.500₫ )
- Bộ đề thi tốt nghiệp 2025 các môn Toán, Lí, Hóa, Văn, Anh, Sinh, Sử, Địa, KTPL (có đáp án chi tiết) ( 36.000₫ )
- Tổng ôn lớp 12 môn Toán, Lí, Hóa, Văn, Anh, Sinh Sử, Địa, KTPL (Form 2025) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Ta có: \({x^2} + {y^2} + {z^2} - 2x - 4y - 6z + 5 = 0 \Leftrightarrow {\left( {x - 1} \right)^2} + {\left( {y - 2} \right)^2} + {\left( {z - 3} \right)^2} = {3^2}\).
Khoảng cách xa nhất giữa hai điểm thuộc vùng phủ sóng là đường kính của mặt cầu, tức là \(6\)km.
Đáp án: \(6\).
Lời giải
Gọi \({V_1}\) là thể tích của khối tròn xoay được tạo thành khi cho hình phẳng giới hạn bởi đồ thị hàm số \(y = x + \frac{1}{x}\), trục hoành và hai đường thẳng \(x = 1,x = 4\) quay quanh trục \(Ox\).
Khi đó \({V_1} = \pi \int\limits_1^4 {{{\left( {x + \frac{1}{x}} \right)}^2}} \;{\rm{d}}x = \frac{{111\pi }}{4}\,\,\left( {{\rm{d}}{{\rm{m}}^{\rm{3}}}} \right)\).
Gọi \({V_2}\) là thể tích của khối tròn xoay được tạo thành khi cho hình phẳng giới hạn bởi đồ thị hàm số \(y = x\), trục hoành và hai đường thẳng \(x = 1,x = 4\) quay quanh trục \(Ox\).
Khi đó \({V_2} = \pi \int\limits_1^4 {{x^2}} \;{\rm{d}}x = 21\,\pi \,\left( {{\rm{d}}{{\rm{m}}^{\rm{3}}}} \right)\).
Vậy thể tích của bề dày chiếc bát thủy tinh đó là: \(V = {V_1} - {V_2} = \frac{{111\pi }}{4} - 21\pi = \frac{{27\pi }}{4} \approx 21,2\,\,\left( {{\rm{d}}{{\rm{m}}^{\rm{3}}}} \right){\rm{.}}\)
Đáp án: \(21,2\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.