Câu hỏi:

25/01/2025 67

Trong các dãy số sau, dãy nào là cấp số cộng:

Đáp án chính xác

Sách mới 2k7: Bộ 20 đề minh họa Toán, Lí, Hóa, Văn, Sử, Địa…. form chuẩn 2025 của Bộ giáo dục (chỉ từ 49k/cuốn).

Đề toán-lý-hóa Đề văn-sử-địa Tiếng anh & các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Xét đáp án A. Ta có: \[{{\rm{u}}_{{\rm{n + 1}}}}{\rm{ = 19}}\left( {{\rm{n + 1}}} \right) - {\rm{5 = 19n + 19}} - {\rm{5 = 19n + 14}}\]

Xét hiệu:  \[{{\rm{u}}_{{\rm{n + 1}}}} - {{\rm{u}}_{\rm{n}}}{\rm{ = }}\left( {{\rm{19n + 14}}} \right) - \left( {{\rm{19n}} - {\rm{5}}} \right){\rm{ = 19n + 14}} - {\rm{19n + 5 = 19}}\]

Vậy dãy số là cấp số cộng có công sai d = 19 .

Xét đáp án B. Ta có:

\[{{\rm{u}}_{\rm{1}}}{\rm{ = }}{\left( { - {\rm{1}}} \right)^{\rm{1}}}{\rm{ + 10}}{\rm{.1 = 9; }}{{\rm{u}}_{\rm{2}}}{\rm{ = }}{\left( { - {\rm{1}}} \right)^{\rm{2}}}{\rm{ + 10}}{\rm{.2 = 21 = }}{{\rm{u}}_{\rm{1}}}{\rm{ + 12; }}{{\rm{u}}_{\rm{3}}}{\rm{ = }}{\left( { - {\rm{1}}} \right)^{\rm{3}}}{\rm{ + 10}}{\rm{.3 = 29 = }}{{\rm{u}}_{\rm{2}}}{\rm{ + 8}}\]Vậy dãy số không là cấp số cộng.

Xét đáp án C. Ta có:

\[{{\rm{u}}_{\rm{1}}}{\rm{ = }}{{\rm{1}}^{\rm{2}}}{\rm{ + 1 + 1 = 3; }}{{\rm{u}}_{\rm{2}}}{\rm{ = }}{{\rm{2}}^{\rm{2}}}{\rm{ + 2 + 1 = 7 = }}{{\rm{u}}_{\rm{1}}}{\rm{ + 4; }}{{\rm{u}}_{\rm{3}}}{\rm{ = }}{{\rm{3}}^{\rm{2}}}{\rm{ + 3 + 1 = 13 = }}{{\rm{u}}_{\rm{2}}}{\rm{ + 6}}\]

Vậy dãy số không là cấp số cộng.

Xét đáp án D. Ta có:

\[{{\rm{u}}_{\rm{1}}}{\rm{ = 2}}{\rm{.}}{{\rm{1}}^{\rm{3}}}{\rm{ + 1 = 3; }}{{\rm{u}}_{\rm{2}}}{\rm{ = 2}}{\rm{.}}{{\rm{2}}^{\rm{3}}}{\rm{ + 1 = 17 = }}{{\rm{u}}_{\rm{1}}}{\rm{ + 14; }}{{\rm{u}}_{\rm{3}}}{\rm{ = 2}}{\rm{.}}{{\rm{3}}^{\rm{3}}}{\rm{ + 1 = 55 = }}{{\rm{u}}_{\rm{2}}}{\rm{ + 38}}\]

Vậy dãy số không là cấp số cộng.

Đáp án cần chọn là: A

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho hai cấp số cộng (un) và (vn) có tổng của n số hạng đầu tiên lần lượt là Sn,Tn. Biết \[\frac{{{{\rm{S}}_{\rm{n}}}}}{{{{\rm{T}}_{\rm{n}}}}}{\rm{ = }}\frac{{{\rm{4n + 1}}}}{{{\rm{6n + 2}}}}\] với mọi \[{\rm{n}} \in {\mathbb{N}^ * }\]. Tính\(\)\[\frac{{{{\rm{u}}_{{\rm{17}}}}}}{{{{\rm{v}}_{{\rm{17}}}}}}\]

Xem đáp án » 25/01/2025 190

Câu 2:

Một đa giác lồi có 10 cạnh và các góc trong của nó lập thành một cấp số cộng với công sai d = 4o . Tìm góc nhỏ nhất của đa giác đó.

Xem đáp án » 25/01/2025 94

Câu 3:

Cho cấp số cộng (un) với \[{{\rm{u}}_{\rm{1}}}{\rm{ = }} - {\rm{2}}\] và \[{{\rm{u}}_{\rm{2}}}{\rm{ = 3}}\]. Công sai của cấp số cộng đã cho bằng:

Xem đáp án » 25/01/2025 68

Câu 4:

Cho bốn số thực a, b, c, d là bốn số hạng liên tiếp của một cấp số cộng. Biết tổng của chúng bằng 4 và tổng các bình phương của chúng bằng 24. Tính \[{\rm{P = }}{{\rm{a}}^{\rm{3}}}{\rm{ + }}{{\rm{b}}^{\rm{3}}}{\rm{ + }}{{\rm{c}}^{\rm{3}}}{\rm{ + }}{{\rm{d}}^{\rm{3}}}\].

Xem đáp án » 25/01/2025 56

Câu 5:

Tìm công sai của cấp số cộng sau:\(\left\{ {\begin{array}{*{20}{c}}{{u_6} = 8}\\{u_2^2 + u_4^2 = 16}\end{array}} \right.\), biết công sai không lớn hơn 2.

Xem đáp án » 25/01/2025 55

Câu 6:

Cho cấp số cộng (un) với số hạng đầu u1 và công sai . Tổng n số hạng đầu tiên của cấp số cộng đã cho được tính theo công thức nào dưới đây ?

Xem đáp án » 25/01/2025 51
Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Siêu tiết kiệm - Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua