Câu hỏi:

25/01/2025 8

Cho bốn số thực a, b, c, d là bốn số hạng liên tiếp của một cấp số cộng. Biết tổng của chúng bằng 4 và tổng các bình phương của chúng bằng 24. Tính \[{\rm{P = }}{{\rm{a}}^{\rm{3}}}{\rm{ + }}{{\rm{b}}^{\rm{3}}}{\rm{ + }}{{\rm{c}}^{\rm{3}}}{\rm{ + }}{{\rm{d}}^{\rm{3}}}\].

Đáp án chính xác

Sale Tết giảm 50% 2k7: Bộ 20 đề minh họa Toán, Lí, Hóa, Văn, Sử, Địa…. form chuẩn 2025 của Bộ giáo dục (chỉ từ 49k/cuốn).

20 đề Toán 20 đề Văn Các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Vì ba số thực a, b, c là ba số hạng liên tiếp của một cấp số cộng nên ta có:

\[{\rm{b = }}\frac{{{\rm{a + c}}}}{{\rm{2}}} \Leftrightarrow {\rm{a + c = 2b}} \Leftrightarrow {\rm{c = 2b}} - {\rm{a}}\left( 1 \right)\]

Vì ba số thực b, c, d là ba số hạng liên tiếp của một cấp số cộng nên ta có:

\[{\rm{c = }}\frac{{{\rm{b + d}}}}{{\rm{2}}} \Leftrightarrow {\rm{b + d = 2c}} \Leftrightarrow {\rm{d = 2c}} - {\rm{b = 2}}\left( {{\rm{2b}} - {\rm{a}}} \right) - {\rm{b = 4b}} - {\rm{2a}} - {\rm{b = 3b}} - {\rm{2a}}\left( {\rm{2}} \right)\]

Tổng của bốn số thực a, b, c, d bằng 4 nên ta có:

\[{\rm{a + b + c + d = 4}} \Leftrightarrow {\rm{a + b + }}\left( {{\rm{2b}} - {\rm{a}}} \right){\rm{ + }}\left( {{\rm{3b}} - {\rm{2a}}} \right){\rm{ = 4}}\]

\[ \Leftrightarrow {\rm{6b}} - {\rm{2a = 4}} \Leftrightarrow {\rm{3b}} - {\rm{a = 2}} \Leftrightarrow {\rm{a = 3b}} - {\rm{2}}\]

Thế a = 3b – 2 vào (1) ta được: \[{\rm{c = 2b}} - \left( {{\rm{3b}} - {\rm{2}}} \right){\rm{ = 2}} - {\rm{b}}\]

Thế a = 3b – 2 vào (2) ta được: \[{\rm{d = 3b}} - {\rm{2}}\left( {{\rm{3b}} - {\rm{2}}} \right){\rm{ = 3b}} - {\rm{6b + 4 = 4}} - {\rm{3b}}\]

Tổng các bình phương của bốn số thực a, b, c, d bằng 24 nên ta có:

\[{{\rm{a}}^{\rm{2}}}{\rm{ + }}{{\rm{b}}^{\rm{2}}}{\rm{ + }}{{\rm{c}}^{\rm{2}}}{\rm{ + }}{{\rm{d}}^{\rm{2}}}{\rm{ = 24}} \Leftrightarrow {\left( {{\rm{3b}} - {\rm{2}}} \right)^{\rm{2}}}{\rm{ + }}{{\rm{b}}^{\rm{2}}}{\rm{ + }}{\left( {{\rm{2}} - {\rm{b}}} \right)^{\rm{2}}}{\rm{ + }}{\left( {{\rm{4}} - {\rm{3b}}} \right)^2}{\rm{ = }}24\]

\[ \Leftrightarrow 9{b^2} - 12b + 4 + {b^2} + 4 - 4b + {b^2} + 16 - 24b + 9{b^2}{\rm{ = }}24\]

\[ \Leftrightarrow 20{b^2} - 40b\,{\rm{ = }}0 \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{{\rm{b = 0}}}\\{{\rm{b = 2}}}\end{array}} \right.\]

Với b = 0 ta có: \[{\rm{a = 3}}{\rm{.0}} - {\rm{2 = }} - {\rm{2; c = 2}} - {\rm{0 = 2; d = 4}} - {\rm{3}}{\rm{.0 = 4}}\]

Vậy \[{\rm{P = }}{{\rm{a}}^{\rm{3}}}{\rm{ + }}{{\rm{b}}^{\rm{3}}}{\rm{ + }}{{\rm{c}}^{\rm{3}}}{\rm{ + }}{{\rm{d}}^{\rm{3}}}{\rm{ = }}{\left( { - {\rm{2}}} \right)^{\rm{3}}}{\rm{ + }}{{\rm{0}}^{\rm{3}}}{\rm{ + }}{{\rm{2}}^{\rm{3}}}{\rm{ + }}{{\rm{4}}^{\rm{3}}}{\rm{ = 64}}\]

Với b = 2 ta có: \[{\rm{a = 3}}{\rm{.2}} - {\rm{2 = 4; c = 2}} - {\rm{2 = 0; d = 4}} - {\rm{3}}{\rm{.2 = }} - {\rm{2}}\]

Vậy\[{\rm{P = }}{{\rm{a}}^{\rm{3}}}{\rm{ + }}{{\rm{b}}^{\rm{3}}}{\rm{ + }}{{\rm{c}}^{\rm{3}}}{\rm{ + }}{{\rm{d}}^{\rm{3}}}{\rm{ = }}{{\rm{4}}^{\rm{3}}}{\rm{ + }}{{\rm{2}}^{\rm{3}}}{\rm{ + }}{{\rm{0}}^{\rm{3}}}{\rm{ + }}{\left( { - {\rm{2}}} \right)^{\rm{3}}}{\rm{ = 64}}\]

Đáp án cần chọn là: D

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho cấp số cộng (un), biết: \[{{\rm{u}}_{\rm{1}}}{\rm{ = }} - {\rm{1, }}{{\rm{u}}_{\rm{4}}}{\rm{ = 8}}\]. Lựa chọn đáp án đúng.

Xem đáp án » 25/01/2025 11

Câu 2:

Cho cấp số cộng (un), biết \[{{\rm{u}}_{\rm{1}}}{\rm{ = }} - {\rm{5, d = 3}}\]. Số 100 là số hạng thứ bao nhiêu?

Xem đáp án » 25/01/2025 11

Câu 3:

Cho cấp số cộng (un)có: \[{{\rm{u}}_{\rm{1}}}{\rm{ = }} - {\rm{1, d = 2, }}{{\rm{S}}_{\rm{n}}}{\rm{ = 483}}\]. Hỏi cấp số cộng có bao nhiêu số hạng?

Xem đáp án » 25/01/2025 11

Câu 4:

Cho a, b, c lập thành một cấp số cộng. Đẳng thức nào sau đây là đúng?

Xem đáp án » 25/01/2025 11

Câu 5:

Cho cấp số cộng (un) với số hạng đầu u1 và công sai . Tổng n số hạng đầu tiên của cấp số cộng đã cho được tính theo công thức nào dưới đây ?

Xem đáp án » 25/01/2025 10

Câu 6:

Cho cấp số cộng (un) với \[{{\rm{u}}_{\rm{1}}}{\rm{ = }} - {\rm{2}}\] và \[{{\rm{u}}_{\rm{2}}}{\rm{ = 3}}\]. Công sai của cấp số cộng đã cho bằng:

Xem đáp án » 25/01/2025 10

Câu 7:

Cho hai cấp số cộng (un) và (vn) có tổng của n số hạng đầu tiên lần lượt là Sn,Tn. Biết \[\frac{{{{\rm{S}}_{\rm{n}}}}}{{{{\rm{T}}_{\rm{n}}}}}{\rm{ = }}\frac{{{\rm{4n + 1}}}}{{{\rm{6n + 2}}}}\] với mọi \[{\rm{n}} \in {\mathbb{N}^ * }\]. Tính\(\)\[\frac{{{{\rm{u}}_{{\rm{17}}}}}}{{{{\rm{v}}_{{\rm{17}}}}}}\]

Xem đáp án » 25/01/2025 10

Bình luận


Bình luận
Vietjack official store