Câu hỏi:
25/01/2025 81Tìm công sai của cấp số cộng sau:\(\left\{ {\begin{array}{*{20}{c}}{{u_6} = 8}\\{u_2^2 + u_4^2 = 16}\end{array}} \right.\), biết công sai không lớn hơn 2.
Quảng cáo
Trả lời:
\(\left\{ {\begin{array}{*{20}{c}}{{u_6} = 8}\\{u_2^2 + u_4^2 = 16}\end{array}} \right. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{{{\rm{u}}_{\rm{1}}}{\rm{ + 5d = 8(1)}}}\\{{{\left( {{{\rm{u}}_{\rm{1}}}{\rm{ + d}}} \right)}^{\rm{2}}}{\rm{ + }}{{\left( {{{\rm{u}}_{\rm{1}}}{\rm{ + 3d}}} \right)}^{\rm{2}}}{\rm{ = 16(2)}}}\end{array}} \right.\)
\[\left( 1 \right) \Leftrightarrow {{\rm{u}}_{\rm{1}}}{\rm{ = 8}} - {\rm{5d}}\]thế vào (2) ta được
\[{\left( {8 - 5d + d} \right)^2} + {\left( {8 - 5d + 3d} \right)^2} = 16 \Leftrightarrow {\left( {8 - 4d} \right)^2} + {\left( {8 - 2d} \right)^2} = 16\]
\( \Leftrightarrow 64 - 64d + 16{d^2} + 64 - 32d + 4{d^2} = 16 \Leftrightarrow 20{d^2} - 96d + 112 = 0 \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{d = 2}\\{d = \frac{{14}}{5}}\end{array}} \right.\)
Vì công sai không lớn hơn 2 nên d = 2
Đáp án cần chọn là: B
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Giả sử cấp số cộng (un) có số hạng đầu u1 và công sai d, cấp số cộng (vn) có số hạng đầu v1 và công sai d’.
Ta có: \[{{\rm{S}}_{\rm{n}}}{\rm{ = }}\frac{{{\rm{n}}\left[ {{\rm{2}}{{\rm{u}}_{\rm{1}}}{\rm{ + }}\left( {{\rm{n}} - {\rm{1}}} \right){\rm{d}}} \right]}}{{\rm{2}}}{\rm{; }}{{\rm{T}}_{\rm{n}}}{\rm{ = }}\frac{{{\rm{n}}\left[ {{\rm{2}}{{\rm{v}}_{\rm{1}}}{\rm{ + }}\left( {{\rm{n}} - 1} \right){\rm{d'}}} \right]}}{{\rm{2}}}\]
\[\frac{{{{\rm{S}}_{\rm{n}}}}}{{{{\rm{T}}_{\rm{n}}}}}{\rm{ = }}\frac{{\frac{{{\rm{n}}\left[ {{\rm{2}}{{\rm{u}}_{\rm{1}}}{\rm{ + }}\left( {{\rm{n}} - {\rm{1}}} \right){\rm{d}}} \right]}}{{\rm{2}}}}}{{\frac{{{\rm{n}}\left[ {{\rm{2}}{{\rm{v}}_{\rm{1}}}{\rm{ + }}\left( {{\rm{n}} - {\rm{1}}} \right){\rm{d'}}} \right]}}{{\rm{2}}}}}{\rm{ = }}\frac{{{\rm{2}}{{\rm{u}}_{\rm{1}}}{\rm{ + }}\left( {{\rm{n}} - {\rm{1}}} \right){\rm{d}}}}{{{\rm{2}}{{\rm{v}}_{\rm{1}}}{\rm{ + }}\left( {{\rm{n}} - {\rm{1}}} \right){\rm{d'}}}}{\rm{ = }}\frac{{{\rm{4n + 1}}}}{{{\rm{6n + 2}}}}\]
\[\frac{{{{\rm{u}}_{{\rm{17}}}}}}{{{{\rm{v}}_{{\rm{17}}}}}}{\rm{ = }}\frac{{{{\rm{u}}_{\rm{1}}}{\rm{ + 16d}}}}{{{{\rm{v}}_{\rm{1}}}{\rm{ + 16d'}}}}{\rm{ = }}\frac{{{\rm{2}}{{\rm{u}}_{\rm{1}}}{\rm{ + 32d}}}}{{{\rm{2}}{{\rm{v}}_{\rm{1}}}{\rm{ + 32d'}}}}{\rm{ = }}\frac{{{\rm{2}}{{\rm{u}}_{\rm{1}}}{\rm{ + }}\left( {{\rm{33}} - {\rm{1}}} \right){\rm{d}}}}{{{\rm{2}}{{\rm{v}}_{\rm{1}}}{\rm{ + }}\left( {{\rm{33}} - {\rm{1}}} \right){\rm{d'}}}}{\rm{ = }}\frac{{{{\rm{S}}_{{\rm{33}}}}}}{{{{\rm{T}}_{{\rm{33}}}}}}{\rm{ = }}\frac{{{\rm{4}}{\rm{.33 + 1}}}}{{{\rm{6}}{\rm{.33 + 2}}}}{\rm{ = }}\frac{{{\rm{133}}}}{{{\rm{200}}}}\]
Đáp án cần chọn là: D
Lời giải
Giả sử các góc của đa giác lồi lập thành cấp số cộng gồm 10 số hạng: \[{{\rm{u}}_{\rm{1}}}{\rm{, }}{{\rm{u}}_{\rm{2}}}{\rm{, }}...{\rm{, }}{{\rm{u}}_{{\rm{10}}}}\].
Tổng các góc của đa giác lồi có 10 cạnh bằng 1440o
Ta có:
\[{{\rm{S}}_{{\rm{10}}}}{\rm{ = }}\frac{{{\rm{10}}\left( {{\rm{2}}{{\rm{u}}_{\rm{1}}}{\rm{ + 9d}}} \right)}}{{\rm{2}}} \Leftrightarrow {\rm{1440 = }}\frac{{{\rm{10}}\left( {{\rm{2}}{{\rm{u}}_{\rm{1}}}{\rm{ + 9}}{\rm{.4}}} \right)}}{{\rm{2}}} \Leftrightarrow {\rm{10}}\left( {{\rm{2}}{{\rm{u}}_{\rm{1}}}{\rm{ + 36}}} \right){\rm{ = 2880}}\]
\[ \Leftrightarrow {\rm{2}}{{\rm{u}}_{\rm{1}}}{\rm{ + 36 = 288}} \Leftrightarrow {\rm{2}}{{\rm{u}}_{\rm{1}}}{\rm{ = 252}} \Leftrightarrow {{\rm{u}}_{\rm{1}}}{\rm{ = 126}}\]
Vậy góc nhỏ nhất của đa giác đó bằng 126oĐáp án cần chọn là: D
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
10 Bài tập Nhận biết góc phẳng của góc nhị diện và tính góc phẳng nhị diện (có lời giải)
Bài tập Hình học không gian lớp 11 cơ bản, nâng cao có lời giải (P11)
Bài tập Xác suất ôn thi THPT Quốc gia có lời giải (P1)
Bài tập Lượng giác lớp 11 cơ bản, nâng cao có lời giải (P1)
12 câu Trắc nghiệm Toán 11 Kết nối tri thức Giá trị lượng giác của góc lượng giác có đáp án
38 câu trắc nghiệm Toán 11 Kết nối tri thức Lôgarit có đáp án
33 câu trắc nghiệm Toán 11 Kết nối tri thức Bài 29: Công thức cộng xác suất có đáp án
10 Bài tập Biểu diễn góc lượng giác trên đường tròn lượng giác (có lời giải)
Hãy Đăng nhập hoặc Tạo tài khoản để gửi bình luận