Câu hỏi:

31/01/2025 9

Tính tổng S các nghiệm trên đoạn \[\left[ { - {\rm{\pi ; \pi }}} \right]\]của phương trình \[\left( {{\rm{2sinx}} - {\rm{1}}} \right)\left( {{\rm{2sin2x + 1}}} \right){\rm{ = 3}} - {\rm{4co}}{{\rm{s}}^{\rm{2}}}{\rm{x}}\]

Đáp án chính xác

Sale Tết giảm 50% 2k7: Bộ 20 đề minh họa Toán, Lí, Hóa, Văn, Sử, Địa…. form chuẩn 2025 của Bộ giáo dục (chỉ từ 49k/cuốn).

Sách đề toán-lý-hóa Sách văn-sử-địa Tiếng anh & các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

\[\left( {{\rm{2sinx}} - {\rm{1}}} \right)\left( {{\rm{2sin2x + 1}}} \right){\rm{ = 3}} - {\rm{4co}}{{\rm{s}}^{\rm{2}}}{\rm{x}}\]

\[ \Leftrightarrow \left( {{\rm{2sinx}} - {\rm{1}}} \right)\left( {{\rm{2sin2x + 1}}} \right){\rm{ = 3}} - {\rm{4}}\left( {{\rm{1}} - {\rm{si}}{{\rm{n}}^{\rm{2}}}{\rm{x}}} \right)\]

\[ \Leftrightarrow \left( {{\rm{2sinx}} - {\rm{1}}} \right)\left( {{\rm{2sin2x + 1}}} \right){\rm{ = 4si}}{{\rm{n}}^{\rm{2}}}{\rm{x}} - {\rm{1}}\]

\[ \Leftrightarrow \left( {{\rm{2sinx}} - {\rm{1}}} \right)\left( {{\rm{2sin2x + 1}}} \right){\rm{ = (2sinx}} - {\rm{1)(2sinx + 1)}}\]

\[ \Leftrightarrow \left( {{\rm{2sinx}} - {\rm{1}}} \right)\left( {{\rm{2sin2x + 1}} - {\rm{2sinx}} - {\rm{1}}} \right)\]

\( \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{2sinx - 1\,\,{\rm{ = 0}}}\\{sin2{\rm{x = si}}nx}\end{array}} \right. \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{2sinx - 1\,\,{\rm{ = 0}}}\\{2sinx.cos{\rm{x = s}}inx}\end{array}} \right.\)

\( \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{{\mathop{\rm s}\nolimits} {\rm{inx = }}\frac{1}{2}}\\{{\mathop{\rm s}\nolimits} {\rm{inx = }}0}\\{cos{\rm{x = }}\frac{1}{2}}\end{array}} \right. \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{{\rm{x = }}\frac{\pi }{6} + k2\pi }\\{{\rm{x = }}\frac{{5\pi }}{6} + k2\pi }\\{{\rm{x = }}k\pi }\\{{\rm{x = }} \pm \frac{\pi }{3} + k2\pi }\end{array}} \right.,k \in \mathbb{Z}\)

Vì \[{\rm{x}} \in \left[ { - {\rm{\pi ; \pi }}} \right] \Rightarrow {\rm{x}} \in \left\{ { - {\rm{\pi ;}} - \frac{{\rm{\pi }}}{{\rm{3}}}{\rm{; 0; }}\frac{{\rm{\pi }}}{{\rm{6}}}{\rm{; }}\frac{{\rm{\pi }}}{{\rm{3}}}{\rm{; }}\frac{{{\rm{5\pi }}}}{{\rm{6}}}{\rm{; \pi }}} \right\} \Leftrightarrow {\rm{S = \pi }}\]Đáp án cần chọn là: A

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Tìm tập nghiệm của phương trình\[{\rm{tan3x + tanx = 0}}\]

Xem đáp án » 31/01/2025 15

Câu 2:

Gọi nghiệm lớn nhất trên khoảng\[\left( {{\rm{0; \pi }}} \right)\] của phương trình \[{\rm{si}}{{\rm{n}}^{\rm{2}}}{\rm{x + co}}{{\rm{s}}^{\rm{2}}}{\rm{4x = 1}}\]có dạng\[{{\rm{x}}_{\rm{0}}}{\rm{ = }}\frac{{{\rm{\pi a}}}}{{\rm{b}}}\]. Tính giá trị biểu thức\[{\rm{P = }}{{\rm{a}}^{\rm{2}}}{\rm{ + }}{{\rm{b}}^{\rm{2}}}\]

Xem đáp án » 31/01/2025 14

Câu 3:

Nghiệm của phương trình \[{\rm{cosx = }} - \frac{{\rm{1}}}{{\rm{2}}}\]là

Xem đáp án » 31/01/2025 13

Câu 4:

Cho hàm số\[{\rm{f}}\left( {\rm{x}} \right){\rm{ = a}}{{\rm{x}}^{\rm{3}}}{\rm{ + b}}{{\rm{x}}^{\rm{2}}}{\rm{ + bx + c}}\]có đồ thị như hình vẽ:

Cho hàm số  f ( x ) = a x 3 + b x 2 + b x + c  có đồ thị như hình vẽ:    Số nghiệm nằm trong  ( − π 2 ; 3 π )  của phương trình  f ( c o s x + 1 ) = c o s x + 1  là (ảnh 1)

Số nghiệm nằm trong\[\left( {\frac{{ - {\rm{\pi }}}}{2};{\rm{3\pi }}} \right)\]của phương trình\[{\rm{f}}\left( {{\rm{cosx + 1}}} \right){\rm{ = cosx + 1}}\]là

Xem đáp án » 31/01/2025 13

Câu 5:

Nghiệm của phương trình \[{\rm{cosx = cos}}\frac{{\rm{\pi }}}{{{\rm{12}}}}\]là

Xem đáp án » 31/01/2025 12

Câu 6:

Giải phương trình\[\sqrt {\rm{3}} {\rm{tan2x}} - {\rm{3 = 0}}\]

Xem đáp án » 31/01/2025 12

Câu 7:

Tìm nghiệm của phương trình\[{\rm{2sinx}} - {\rm{3 = 0}}\]

Xem đáp án » 31/01/2025 12

Bình luận


Bình luận