Câu hỏi:
11/03/2025 173Quảng cáo
Trả lời:
Thay \[x = 9\] (thỏa mãn điều kiện) vào biểu thức \[A,\] ta được: \[A = \frac{{3\sqrt 9 }}{{\sqrt 9 + 2}} = \frac{{3 \cdot 3}}{{3 + 2}} = \frac{9}{5}.\]
Vậy khi \[x = 9\] thì \[A = \frac{9}{5}\].
Câu hỏi cùng đoạn
Câu 2:
Lời giải của GV VietJack
Với \[x \ge 0,\,\,x \ne 4\] ta có:
\[B = \frac{{x + 4}}{{x - 4}} - \frac{2}{{\sqrt x - 2}}\]\[ = \frac{{x + 4}}{{\left( {\sqrt x + 2} \right)\left( {\sqrt x - 2} \right)}} - \frac{{2\left( {\sqrt x + 2} \right)}}{{\left( {\sqrt x + 2} \right)\left( {\sqrt x - 2} \right)}}\]
\[ = \frac{{x + 4 - 2\left( {\sqrt x + 2} \right)}}{{\left( {\sqrt x + 2} \right)\left( {\sqrt x - 2} \right)}} = \frac{{x + 4 - 2\sqrt x - 4}}{{\left( {\sqrt x + 2} \right)\left( {\sqrt x - 2} \right)}} = \frac{{x - 2\sqrt x }}{{\left( {\sqrt x + 2} \right)\left( {\sqrt x - 2} \right)}}\]
\[ = \frac{{\sqrt x \left( {\sqrt x - 2} \right)}}{{\left( {\sqrt x + 2} \right)\left( {\sqrt x - 2} \right)}} = \frac{{\sqrt x }}{{\sqrt x + 2}}.\]
Vậy với \[x \ge 0,\,\,x \ne 4\] thì \[B = \frac{{\sqrt x }}{{\sqrt x + 2}}.\]
Câu 3:
Lời giải của GV VietJack
Với \[x \ge 0,\,\,x \ne 4\] ta có:
\[A - B = \frac{{3\sqrt x }}{{\sqrt x + 2}} - \frac{{\sqrt x }}{{\sqrt x + 2}} = \frac{{2\sqrt x }}{{\sqrt x + 2}}.\]
Theo bài, \[A - B < \frac{5}{4}\]
Suy ra \[\frac{{2\sqrt x }}{{\sqrt x + 2}} < \frac{5}{4}\]
\[\frac{{2\sqrt x }}{{\sqrt x + 2}} - \frac{5}{4} < 0\]
\[\frac{{8\sqrt x }}{{4\left( {\sqrt x + 2} \right)}} - \frac{{5\left( {\sqrt x + 2} \right)}}{{4\left( {\sqrt x + 2} \right)}} < 0\]
\[\frac{{8\sqrt x - 5\sqrt x - 10}}{{4\left( {\sqrt x + 2} \right)}} < 0\]
\[\frac{{3\sqrt x - 10}}{{4\left( {\sqrt x + 2} \right)}} < 0\] (*)
Với mọi \[x \ge 0,\,\,x \ne 4\] ta có: \[\sqrt x \ge 0\] nên \[\sqrt x + 2 > 0\] nên từ bất phương trình (*) suy ra:
\[3\sqrt x - 10 < 0\]
\[3\sqrt x < 10\]
\[\sqrt x < \frac{{10}}{3}\]
\[x < \frac{{100}}{9}\].
Kết hợp điều kiện xác định \[x \ge 0,\,\,x \ne 4\] ta có \[0 \le x < \frac{{100}}{9},\,\,x \ne 4.\]
Mà \[x\] là số nguyên dương lớn nhất nên \[x = 11\].
Vậy \(x = 11\) thỏa mãn yêu cầu đề bài.
Hot: 500+ Đề thi vào 10 file word các Sở Hà Nội, TP Hồ Chí Minh có đáp án 2025 (chỉ từ 100k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Câu 2:
Câu 3:
(0,5 điểm) Xét các hình hộp chữ nhật có thể tích bằng \(27\,{\rm{c}}{{\rm{m}}^{\rm{3}}}\) mà đáy là hình vuông cạnh \(a\,\,({\rm{cm}})\) và chiều cao \(h\,\,({\rm{cm}}).\) Tìm hình hộp có diện tích toàn phần nhỏ nhất.
Dạng 5: Bài toán về lãi suất ngân hàng có đáp án
Bộ 10 đề thi cuối kì 1 Toán 9 Kết nối tri thức có đáp án - Đề 01
Đề thi minh họa TS vào 10 năm học 2025 - 2026_Môn Toán_Tỉnh Đắk Lắk
15 câu Trắc nghiệm Toán 9 Kết nối tri thức Bài 1. Khái niệm phương trình và hệ hai phương trình bậc nhất hai ẩn có đáp án
Dạng 2: Kỹ thuật chọn điểm rơi trong bài toán cực trị xảy ra ở biên có đáp án
123 bài tập Nón trụ cầu và hình khối có lời giải
Dạng 6: Bài toán về tăng giá, giảm giá và tăng, giảm dân số có đáp án
Bộ 10 đề thi cuối kì 2 Toán 9 Chân trời sáng tạo có đáp án (Đề số 1)
Hãy Đăng nhập hoặc Tạo tài khoản để gửi bình luận