Câu hỏi:

11/03/2025 94

Câu 1-3 (2,0 điểm) Cho hai biểu thức A=3xx+2 B=x+4x42x2 với x0;x4.

1) Tính giá trị của biểu thức A khi x=9.

Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa... kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 70k).

Tổng ôn Toán-lý hóa Văn-sử-đia Tiếng anh & các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Thay \[x = 9\] (thỏa mãn điều kiện) vào biểu thức \[A,\] ta được: \[A = \frac{{3\sqrt 9 }}{{\sqrt 9 + 2}} = \frac{{3 \cdot 3}}{{3 + 2}} = \frac{9}{5}.\]

Vậy khi \[x = 9\] thì \[A = \frac{9}{5}\].

Câu hỏi cùng đoạn

Câu 2:

2) Chứng minh B=xx+2.

Xem lời giải

verified Lời giải của GV VietJack

Với \[x \ge 0,\,\,x \ne 4\] ta có:

\[B = \frac{{x + 4}}{{x - 4}} - \frac{2}{{\sqrt x - 2}}\]\[ = \frac{{x + 4}}{{\left( {\sqrt x + 2} \right)\left( {\sqrt x - 2} \right)}} - \frac{{2\left( {\sqrt x + 2} \right)}}{{\left( {\sqrt x + 2} \right)\left( {\sqrt x - 2} \right)}}\]

 \[ = \frac{{x + 4 - 2\left( {\sqrt x + 2} \right)}}{{\left( {\sqrt x + 2} \right)\left( {\sqrt x - 2} \right)}} = \frac{{x + 4 - 2\sqrt x - 4}}{{\left( {\sqrt x + 2} \right)\left( {\sqrt x - 2} \right)}} = \frac{{x - 2\sqrt x }}{{\left( {\sqrt x + 2} \right)\left( {\sqrt x - 2} \right)}}\]

 \[ = \frac{{\sqrt x \left( {\sqrt x - 2} \right)}}{{\left( {\sqrt x + 2} \right)\left( {\sqrt x - 2} \right)}} = \frac{{\sqrt x }}{{\sqrt x + 2}}.\]

Vậy với \[x \ge 0,\,\,x \ne 4\] thì \[B = \frac{{\sqrt x }}{{\sqrt x + 2}}.\]

Câu 3:

3) Tìm số nguyên dương x lớn nhất thỏa mãn AB<54.

Xem lời giải

verified Lời giải của GV VietJack

Với \[x \ge 0,\,\,x \ne 4\] ta có:

\[A - B = \frac{{3\sqrt x }}{{\sqrt x + 2}} - \frac{{\sqrt x }}{{\sqrt x + 2}} = \frac{{2\sqrt x }}{{\sqrt x + 2}}.\]

Theo bài, \[A - B < \frac{5}{4}\]

Suy ra \[\frac{{2\sqrt x }}{{\sqrt x + 2}} < \frac{5}{4}\]

\[\frac{{2\sqrt x }}{{\sqrt x + 2}} - \frac{5}{4} < 0\]

\[\frac{{8\sqrt x }}{{4\left( {\sqrt x + 2} \right)}} - \frac{{5\left( {\sqrt x + 2} \right)}}{{4\left( {\sqrt x + 2} \right)}} < 0\]

\[\frac{{8\sqrt x - 5\sqrt x - 10}}{{4\left( {\sqrt x + 2} \right)}} < 0\]

\[\frac{{3\sqrt x - 10}}{{4\left( {\sqrt x + 2} \right)}} < 0\] (*)

Với mọi \[x \ge 0,\,\,x \ne 4\] ta có: \[\sqrt x \ge 0\] nên \[\sqrt x + 2 > 0\] nên từ bất phương trình (*) suy ra:

\[3\sqrt x - 10 < 0\]

\[3\sqrt x < 10\]

\[\sqrt x < \frac{{10}}{3}\]

    \[x < \frac{{100}}{9}\].

Kết hợp điều kiện xác định \[x \ge 0,\,\,x \ne 4\] ta có \[0 \le x < \frac{{100}}{9},\,\,x \ne 4.\]

\[x\] là số nguyên dương lớn nhất nên \[x = 11\].

Vậy \(x = 11\) thỏa mãn yêu cầu đề bài.

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

a) Nếu người ta làm hàng rào xung quanh công viên thì hàng rào có chiều dài bao nhiêu?

Xem đáp án » 11/03/2025 575

Câu 2:

1) Năm ngoái, hai đơn vị sản xuất nông nghiệp thu hoạch được \[600\] tấn thóc. Năm nay, đơn vị thứ nhất làm vượt mức \(10{\rm{\% }}\), đơn vị thứ hai làm vượt mức \(20{\rm{\% }}\) so với năm ngoái. Do đó cả hai đơn vị thu hoạch được \[685\] tấn thóc. Hỏi năm ngoái, mỗi đơn vị thu hoạch được bao nhiêu tấn thóc?

Xem đáp án » 11/03/2025 122

Câu 3:

a) Chứng minh tứ giác \[BMDF\] nội tiếp.

Xem đáp án » 11/03/2025 115

Câu 4:

(0,5 điểm) Xét các hình hộp chữ nhật có thể tích bằng \(27\,{\rm{c}}{{\rm{m}}^{\rm{3}}}\) mà đáy là hình vuông cạnh \(a\,\,({\rm{cm}})\) và chiều cao \(h\,\,({\rm{cm}}).\) Tìm hình hộp có diện tích toàn phần nhỏ nhất.

Xem đáp án » 11/03/2025 61

Câu 5:

2) Chứng minh B=xx+2.

Xem đáp án » 11/03/2025 0

Câu 6:

3) Tìm số nguyên dương x lớn nhất thỏa mãn AB<54.

Xem đáp án » 11/03/2025 0
Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Siêu tiết kiệm - Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua