Câu 3-4 (2,0 điểm)
1) Giải hệ phương trình \(\left\{ {\begin{array}{*{20}{l}}{5x + y = 11}\\{2x + 3y = 7}\end{array}} \right.\).
Câu 3-4 (2,0 điểm)
Quảng cáo
Trả lời:

Xét hệ phương trình \(\left\{ {\begin{array}{*{20}{l}}{5x + y = 11}\\{2x + 3y = 7}\end{array}} \right.\)
Nhân hai vế của phương trình thứ nhất với 3, ta được hệ \(\left\{ {\begin{array}{*{20}{l}}{15x + 3y = 33}\\{2x + 3y = 7}\end{array}} \right..\)
Trừ từng vế phương trình thứ nhất cho phương trình thứ hai của hệ mới, ta được:
\[13x = 26,\] suy ra \[x = 2.\]
Thay \(x = 2\) vào phương trình \(5x + y = 11,\) ta được:
\(5 \cdot 2 + y = 11,\) suy ra \(y = 1\).
Vậy hệ phương trình có nghiệm duy nhất là \(\left( {x;\,\,y} \right) = \left( {2;\,\,1} \right).\)
Câu hỏi cùng đoạn
Câu 2:
2) Lấy ngẫu nhiên một tấm thẻ từ một hộp chứa 40 thẻ được đánh số từ 1 đến 40 (mỗi thẻ chỉ được ghi một số). Tìm xác suất để thẻ được lấy ghi số chia hết cho 6.

Không gian mẫu của phép thử là: \(\Omega = \left\{ {1;\,\,2;\,\,3;\,\, \ldots ;\,\,40} \right\}.\) Không gian mẫu có 40 phần tử.
Gọi \[A\] là biến cố lấy được thẻ ghi số chia hết cho 6.
Có 6 kết quả thuận lợi cho biến cố \(A\) là \(6;\,\,12;\,\,18;\,\,24;\,\,30;\,\,36.\)
Vậy xác suất biến cố \[A\] là: \(P\left( A \right) = \frac{6}{{40}} = 0,15.\)
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Vì \(AD \bot BC,\,\,BE \bot AC\) nên: \(\widehat {HDC} = 90^\circ ,\) \(\widehat {HEC} = 90^\circ .\)
Xét \(\Delta DHC\) vuông tại \[D\] nên ba điểm \[D,\,\,H,\,\,C\] cùng nằm trên đường tròn đường kính \(HC.\)
Xét \(\Delta EHC\) vuông tại \[E\] nên ba điểm \[E,\,\,H,\,\,C\] cùng nằm trên đường tròn đường kính \(HC.\)
Suy ra bốn điểm \[D,\,\,H,\,\,E,\,\,C\] cùng thuộc đường tròn đường kính \[HC,\] do đó tứ giác \[DHEC\] nội tiếp.Lời giải
a) Thay \(m = 1\) vào phương trình (*), ta được:
\({x^2} - \left( {1 + 5} \right)x + 3 \cdot 1 + 6 = 0\)
\({x^2} - 6x + 9 = 0\)
\({\left( {x - 3} \right)^2} = 0\)
\(x - 3 = 0\)
\(x = 3.\)
Vậy với \(m = 1\) thì phương trình (*) có nghiệm \(x = 3.\)
b) Xét phương trình \({x^2} - \left( {m + 5} \right)x + 3m + 6 = 0\) (*) có \(a = 1 \ne 0;\,\,b = - \left( {m + 5} \right);\,\,c = 3m + 6.\)
Ta có\[\Delta = {b^2} - 4ac = {\left[ { - \left( {m + 5} \right)} \right]^2} - 4 \cdot 1 \cdot \left( {3m + 6} \right)\]
\[ = {m^2} + 10m + 25 - 12m - 24\]\[ = {m^2} - 2m + 1 = {\left( {m - 1} \right)^2} \ge 0\] với mọi \(m.\)
Phương trình có hai nghiệm phân biệt khi \(\Delta > 0,\) tức là \({\left( {m - 1} \right)^2} > 0,\) suy ra \({\left( {m - 1} \right)^2} \ne 0\) hay \(m - 1 \ne 0\) nên \(m \ne 1\).
Áp dụng định lí Viète ta có \(\left\{ {\begin{array}{*{20}{l}}{{x_1} + {x_2} = m + 5}\\{{x_1}{x_2} = 3m + 6}\end{array}} \right..\)
Vì \({x_1},\,\,{x_2}\) là độ dài hai cạnh góc vuông của một tam giác vuông nên \({x_1} > 0,\,\,{x_2} > 0.\) Suy ra \({x_1} + {x_2} > 0\) và \({x_1}{x_2} > 0.\)
Khi đó, ta có \(\left\{ {\begin{array}{*{20}{l}}{m + 5 > 0}\\{3m + 6 > 0}\end{array}} \right.\) hay \(\left\{ {\begin{array}{*{20}{l}}{m > - 5}\\{m > - 2}\end{array}} \right.\) nên \(m > - 2.\)
Vì \({x_1},\,\,{x_2}\) là độ dài hai cạnh góc vuông của một tam giác vuông có độ dài cạnh huyền 5 nên ta áp dụng định lí Pythagore, có:
\(x_1^2 + x_2^2 = {5^2}\)
\(x_1^2 + 2{x_1}{x_2} + x_2^2 - 2{x_1}{x_2} = 25\)
\({\left( {{x_1} + {x_2}} \right)^2} - 2{x_1}{x_2} = 25\)
\({\left( {m + 5} \right)^2} - 2\left( {3m + 6} \right) = 25\)
\({m^2} + 10m + 25 - 6m - 12 = 25\)
\({m^2} + 4m - 12 = 0\)
\({m^2} + 6m - 2m - 12 = 0\)
\(m\left( {m + 6} \right) - 2\left( {m + 6} \right) = 0\)
\(\left( {m + 6} \right)\left( {m - 2} \right) = 0\)
\(m + 6 = 0\) hoặc \(m - 2 = 0\)
\(m = - 6\) hoặc \(m = 2.\)
Kết hợp điều kiện \(m > - 2\) suy ra \(m = 2.\)
Vậy \(m = 2\) thì phương trình có 2 nghiệm phân biệt \({x_1},\,\,{x_2}\) là độ dài hai cạnh góc vuông của một tam giác vuông có độ dài cạnh huyền 5.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.