Câu hỏi:

12/03/2025 234

Câu 1-2 (2,0 điểm) 

Cho biểu thức: P=2aa+3+a+1a3+3+7a9a  (với a0,  a9).

1) Rút gọn biểu thức \(P.\)

Sách mới 2k7: Bộ 20 đề minh họa Toán, Lí, Hóa, Văn, Sử, Địa…. form chuẩn 2025 của Bộ giáo dục (chỉ từ 49k/cuốn).

Đề toán-lý-hóa Đề văn-sử-địa Tiếng anh & các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

1) Với \(a \ge 0,\,\,a \ne 9,\) ta có:

\(P = \frac{{2\sqrt a }}{{\sqrt a + 3}} + \frac{{\sqrt a + 1}}{{\sqrt a - 3}} + \frac{{ - 3 - 7\sqrt a }}{{\left( {\sqrt a + 3} \right)\left( {\sqrt a - 3} \right)}}\)

 \[ = \frac{{2\sqrt a \cdot \left( {\sqrt a - 3} \right)}}{{\left( {\sqrt a + 3} \right)\left( {\sqrt a - 3} \right)}} + \frac{{\left( {\sqrt a + 1} \right)\left( {\sqrt a + 3} \right)}}{{\left( {\sqrt a + 3} \right)\left( {\sqrt a - 3} \right)}} + \frac{{ - 3 - 7\sqrt a }}{{\left( {\sqrt a + 3} \right)\left( {\sqrt a - 3} \right)}}\]

 \[ = \frac{{2a - 6\sqrt a + a + 3\sqrt a + \sqrt a + 3 - 3 - 7\sqrt a }}{{\left( {\sqrt a + 3} \right)\left( {\sqrt a - 3} \right)}}\]

 \( = \frac{{3a - 9\sqrt a }}{{\left( {\sqrt a + 3} \right)\left( {\sqrt a - 3} \right)}} = \frac{{3\sqrt a \left( {\sqrt a - 3} \right)}}{{\left( {\sqrt a + 3} \right)\left( {\sqrt a - 3} \right)}} = \frac{{3\sqrt a }}{{\sqrt a + 3}}.\)

Vậy với \(a \ge 0,\,\,a \ne 9\) thì \(P = \frac{{3\sqrt a }}{{\sqrt a + 3}}.\)

Câu hỏi cùng đoạn

Câu 2:

2) Tìm giá trị của \[a\] để biểu thức \[P\] đạt giá trị nguyên.

Xem lời giải

verified Lời giải của GV VietJack

Với \(a \ge 0,\,\,a \ne 9,\) ta có: \(P = \frac{{3\sqrt a }}{{\sqrt a + 3}} = \frac{{3\left( {\sqrt a + 3} \right) - 9}}{{\sqrt a + 3}} = 3 - \frac{9}{{\sqrt a + 3}}.\)

\(a \ge 0\) nên \(\sqrt a \ge 0,\,\,3\sqrt a \ge 0\)\(\sqrt a + 3 \ge 3 > 0,\) suy ra \(\frac{{3\sqrt a }}{{\sqrt a + 3}} \ge 0\) nên \(P \ge 0.\) (1)

Ta có \( - \frac{9}{{\sqrt a + 3}} < 0\) nên \(3 - \frac{9}{{\sqrt a + 3}} < 3\) suy ra \(P < 3.\) (2)

Từ (1) và (2) ta có \(0 \le P < 3.\)

\(P\) có giá trị nguyên suy ra \(P \in \left\{ {0;\,\,1;\,\,2} \right\}.\)

\(P = 0\) tức là \(3 - \frac{9}{{\sqrt a + 3}} = 0\) suy ra \(\frac{9}{{\sqrt a + 3}} = 3,\) do đó \(\sqrt a + 3 = 3,\) nên \(a = 0;\)

\(P = 1\) tức là \(3 - \frac{9}{{\sqrt a + 3}} = 1\) suy ra \(\frac{9}{{\sqrt a + 3}} = 2,\) do đó \(\sqrt a + 3 = \frac{9}{2}\) nên \(a = \frac{9}{4};\)

\(P = 2\) tức là \(3 - \frac{9}{{\sqrt a + 3}} = 2\) suy ra \(\frac{9}{{\sqrt a + 3}} = 1,\) do đó \(\sqrt a + 3 = 9\) nên \(a = 36.\)

Kết hợp điều kiện xác định \(a \ge 0,\,\,a \ne 9\) suy ra \(a = \left\{ {0;\,\,\frac{9}{4};\,\,36} \right\}.\)

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

1) Chứng minh rằng tứ giác \[DHEC\] nội tiếp.

Xem đáp án » 12/03/2025 317

Câu 2:

1) Giải hệ phương trình \(\left\{ {\begin{array}{*{20}{l}}{5x + y = 11}\\{2x + 3y = 7}\end{array}} \right.\).

Xem đáp án » 12/03/2025 198

Câu 3:

1) Cho phương trình \({x^2} - \left( {m + 5} \right)x + 3m + 6 = 0\quad \left( * \right)\) \[(m\] là tham số).
a) Giải phương trình (*) với \(m = 1.\)
b) Tìm \(m\) để phương trình (*) có hai nghiệm phân biệt \({x_1},\,\,{x_2}\) là độ dài hai cạnh góc vuông của một tam giác vuông có độ dài cạnh huyền 5.

Xem đáp án » 12/03/2025 159

Câu 4:

(0,5 điểm) Với \(x,\,\,y,\,\,z\) là các số thực dương thỏa mãn đẳng thức \(xy + yz + zx = 5.\) Tìm giá trị nhỏ nhất của biểu thức: \(P = \frac{{3x + 3y + 2z}}{{\sqrt {6\left( {{x^2} + 5} \right)} + \sqrt {6\left( {{y^2} + 5} \right)} + \sqrt {\left( {{z^2} + 5} \right)} }}.\)

Xem đáp án » 12/03/2025 113

Câu 5:

2) Tìm giá trị của \[a\] để biểu thức \[P\] đạt giá trị nguyên.

Xem đáp án » 12/03/2025 0

Câu 6:

2) Lấy ngẫu nhiên một tấm thẻ từ một hộp chứa 40 thẻ được đánh số từ 1 đến 40 (mỗi thẻ chỉ được ghi một số). Tìm xác suất để thẻ được lấy ghi số chia hết cho 6.

Xem đáp án » 11/03/2025 0
Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Siêu tiết kiệm - Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua