Câu hỏi:
12/03/2025 773Câu 13-15 (3,0 điểm) Cho tam giác \[ABC\] có ba góc nhọn \[\left( {AB\; < AC} \right).\] Đường tròn tâm \[O\] đường kính \[BC\] cắt hai cạnh \[AB,\,\,\;AC\] lần lượt tại \[E\] và \[F\] \[(E\] khác \[B,\,\,F\] khác \[C).\] Các đoạn thẳng \[BF\] và \[CE\] cắt nhau tại \[H,\] tia \[AH\] cắt \[BC\] tại \[K.\]
Quảng cáo
Trả lời:
Vì \[\widehat {BEC},\,\,\widehat {BFC}\] là các góc nội tiếp chắn nửa đường tròn \(\left( O \right)\) nên ta có
Khi đó \[\Delta AEH\] vuông tại \[E\] nên \[A,\,\,E,\,\,H\] cùng thuộc đường tròn đường kính \[AH.\]
Tương tự \[\Delta AFH\]vuông tại F nên \[A,\,\,H,\,\,F\] cùng thuộc đường tròn đường kính \[AH.\]Vậy \[A,\,\,E,\,\,F,\,\,H\] cùng thuộc đường trong đường kính \[AH\] hay tứ giác \[AEHF\] nội tiếp.
Câu hỏi cùng đoạn
Câu 2:
Lời giải của GV VietJack
Ta có (tính chất góc nội tiếp chắn nửa đường tròn)
Xét \(\Delta BDK\) và \(\Delta BCD\) có \[\widehat {CBD}\] là góc chung; \[\widehat {BKD} = \;\widehat {BDC}\,\,\left( { = \;90^\circ } \right)\]
Do đó
Suy ra \(\frac{{BD}}{{BC}} = \frac{{BK}}{{BD}}\) hay \[B{D^2} = BK \cdot BC\].
Do nên \[\widehat {BDH} = \;\widehat {BCD}\] (hai góc tương ứng).
Mà \[\widehat {BCD} = \widehat {BFD}\] (hai góc nội tiếp cùng chắn cung \[BD)\]
Nên \[\widehat {BDH} = \widehat {BFD}\] (đpcm)
Câu 3:
Lời giải của GV VietJack
Do \[\Delta AFB\] vuông tại \[F\] nên \[\widehat {ABF} = 90^\circ - \widehat {BAF} = 90^\circ - 60^\circ = 30^\circ \].
Mà nên \[\widehat {OEF} = 2 \cdot 30^\circ = 60^\circ .\]
Xét \[\Delta OEF\] cân tại \[O\] (do \[OE = OF\]) có \[\widehat {EOF} = 60^\circ \] nên \[\Delta OEF\] là tam giác đều.
Suy ra \[EF = OE = OF = \frac{1}{2}BC = 3\,\,{\rm{cm}}{\rm{.}}\]
Xét \[\Delta ABC\] có đường cao \[CE\] và \[BF\] cắt nhau tại \[H\] nên \[H\] là trực tâm.
Suy ra \[AH \bot BC\]
Xét \[\Delta AHF\] và \[\widehat {BHK}\] có \[\widehat {AHF} = \;\widehat {BHK}\] (đối đỉnh) và \[\widehat {AFH} = \;\widehat {BKH}\,\,\left( { = \;90^\circ } \right)\]
Suy ra \[\widehat {HAF} = \widehat {HBK}\] hay \[\widehat {HAF} = \widehat {FBC}\]
Kết hợp \[\widehat {AFH} = \;\widehat {BFC}\,\,\left( { = \;90^\circ } \right)\] suy ra
Suy ra \(\frac{{AH}}{{BC}} = \frac{{AF}}{{BF}} = \cot \widehat {FAB} = \cot 60^\circ = \frac{{\sqrt 3 }}{3}\) .
Suy ra \(AH = \frac{{\sqrt 3 }}{3} \cdot BC = \frac{{\sqrt 3 }}{3} \cdot 6 = 2\sqrt 3 .\)
Xét tứ giác \[AEHF\] nội tiếp đường tròn đường kính \[AH\] nên bán kính bằng \(\frac{{2\sqrt 3 }}{2} = \sqrt 3 .\)
Vậy \[EF = 3\,\,{\rm{cm}}\] và bán kính đường tròn ngoại tiếp tam giác \[AEF\] là \(\sqrt 3 .\)
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
1) Chiều rộng của khu vườn hình chữ nhật sau khi mở rộng là:
\[30 + x + x = 30 + 2x\,\,\left( {\rm{m}} \right)\]
Chiều dài của khu vườn hình chữ nhật sau khi mở rộng là:
\[70 + x + x = 70 + 2x\,\,\left( {\rm{m}} \right)\]
Diện tích của khu vườn hình chữ nhật sau khi mở rộng là:
\[\left( {30 + 2x} \right)\left( {70 + 2x} \right)\,\,\left( {{{\rm{m}}^{\rm{2}}}} \right)\]
Vậy biểu thức \[S\] biểu diễn theo \[x\] là \[S = \left( {30 + 2x} \right)\left( {70 + 2x} \right)\].
Lời giải
1) Phương trình \[2{x^2} - 5x + 1 = 0\] có \[a = 2\,;\,\,b = - 5\,;\,\,c = 1\] nên ta có:
\[\Delta \; = \;{\left( { - 5} \right)^2} - \;4 \cdot 2 \cdot 1 = \;25 - \;8 = \;17 > \;0\] nên phương trình có hai nghiệm phân biệt.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
123 bài tập Nón trụ cầu và hình khối có lời giải
Đề thi minh họa TS vào 10 năm học 2025 - 2026_Môn Toán_Tỉnh Đắk Lắk
50 bài tập Một số yếu tố xác suất có lời giải
Đề thi tham khảo môn Toán vào 10 tỉnh Quảng Bình năm học 2025-2026
Đề thi tham khảo TS vào 10 năm học 2025 - 2026_Môn Toán_TP Phú Thọ
Đề thi minh họa TS vào 10 năm học 2025 - 2026_Môn Toán_TP Hà Nội
54 bài tập Hàm số bậc hai và giải bài toán bằng cách lập phương trình có lời giải
Đề thi thử TS vào 10 (Tháng 1) năm học 2025 - 2026_Môn Toán_THCS Cầu Giấy_Quận Cầu Giấy